2015년 7월 29일 수요일

[6th Week] Bluetooth on RPi & MATLAB Plotting


Here's simple Bluetooth module HC-06. It is generally used for Arduino, but I'm going to use it on RPi, and send data to my laptop.

General explanations are posted on this website(http://blog.miguelgrinberg.com/post/a-cheap-bluetooth-serial-port-for-your-raspberry-pi/page/0). I used some contents I need from this post.


After connecting module and RPi like this figure, we need a few setup on RPi.
Type this command on terminal. sudo nano /boot/cmdline.txt
Fix the contents like this => dwc_otg.lpm_enable=0 console=tty1 root=/dev/mmcblk0p2 rootfstype=ext4 elevator=deadline rootwait
Also Type this command on terminal. sudo nano /etc/inittab
Comment out the last line => #T0:23:respawn:/sbin/getty -L ttyAMA0 115200 vt100

Reboot the Raspberry Pi, then we're ready to use Bluetooth module as ttyAMA0 port. Then, I tested sending data from RPi to laptop. I used data from MPU6050 in this test.



Here's design. Sensor data flow can be described like this.
Sensor(MPU6050) -> Arduino -> Raspberry Pi -> Laptop

I fixed some line of code that I used on RPi before.

import sys
import serial

port1 = "/dev/ttyACM0"
portout = "/dev/ttyAMA0"

serialFromArduino1 = serial.Serial(port1, 115200)
serialFromArduino1.flushInput()
serialToMATLAB = serial.Serial(portout, 9600)
serialToMATLAB.flushInput()
serialToMATLAB.flushOutput

def getSensorData1():
    print('*MPU-6050*')
    r_accel = serialFromArduino1.readline()
    print(r_accel)
    r_temp = serialFromArduino1.readline()
    print(r_temp)
    r_gyro = serialFromArduino1.readline()
    print(r_gyro)

    accel = r_accel.split()
    temp = r_temp.split()
    gyro = r_gyro.split()
    acc_x, acc_y, acc_z = accel[2],accel[3],accel[4]
    temp = temp[1]
    gyro_x, gyro_y, gyro_z = gyro[2],gyro[3],gyro[4]

    return(acc_x,acc_y,acc_z,temp,gyro_x,gyro_y,gyro_z)

def main():
    print('starting...')

    while True:
        if(serialFromArduino1.inWaiting() > 0):
            if(serialFromArduino1.readline().find('*') != -1 and serialFromArduino1.readline().find('=')!= -1):
                acc_x,acc_y,acc_z,temp,gyro_x,gyro_y,gyro_z = getSensorData1()
                print('Raw Data: ')
                print(acc_x,acc_y,acc_z,temp,gyro_x,gyro_y,gyro_z)
                print('\n')
                serialToMATLAB.write('*\n')
                serialToMATLAB.write(acc_x + '\n')
                serialToMATLAB.write(acc_y + '\n')
                serialToMATLAB.write(acc_z + '\n')
                serialToMATLAB.write(temp+ '\n')
                serialToMATLAB.write(gyro_x + '\n')
                serialToMATLAB.write(gyro_y + '\n')
                serialToMATLAB.write(gyro_z + '\n')

if __name__ == '__main__':
    main()

I just added ttyAMA0 port, and used it for serial out. I received these data with MATLAB, and plotted each data. Here's MATLAB code below.(Just for testing)

clear all; clc; close all; s = Bluetooth('HC-06',1); fopen(s); time = 0; temp1 = 0; temp2 = 0; temp3 = 0; temp4 = 0; temp5 = 0; temp6 = 0; temp7 = 0; while(1) if(strtrim(fgets(s)) == '*') time = time+0.5; acc_x = str2double(strtrim(fgets(s))); acc_y = str2double(strtrim(fgets(s))); acc_z = str2double(strtrim(fgets(s))); temper = str2double(strtrim(fgets(s))); gyro_x = str2double(strtrim(fgets(s))); gyro_y = str2double(strtrim(fgets(s))); gyro_z = str2double(strtrim(fgets(s))); x=[time-0.5 time]; y1=[temp1 acc_x]; subplot(3,3,1); line(x,y1); y2=[temp2 acc_y]; subplot(3,3,2); line(x,y2); y3=[temp3 acc_z]; subplot(3,3,3); line(x,y3); y4=[temp4 temper]; subplot(3,3,4); line(x,y4); y5=[temp5 gyro_x]; subplot(3,3,5); line(x,y5); y6=[temp6 gyro_y]; subplot(3,3,6); line(x,y6); y7=[temp7 gyro_z]; subplot(3,3,7); line(x,y7); temp1 = acc_x; temp2 = acc_y; temp3 = acc_z; temp4 = temper; temp5 = gyro_x; temp6 = gyro_y; temp7 = gyro_z; hold on; drawnow; end end fclose(s);

I used same code on Arduino for MPU6050. Just changed sensing delay for convenience.
Result looks like this. It is graph of Accel(x,y,z), Temperature, Gyro(x,y,z).
This shows the result when I shake the sensor. Data includes 20 samples per second, so I arbitrary set the data capturing interval as 0.05 second in MATLAB. Maybe I can use some functions related to date or time in python to make more accurate real-time plotting.

2015년 7월 27일 월요일

[6th Week] 2 Sensor Testing


Here's current design of Sensors, Arduinos, and Raspberry Pi.

I've done some works with 2 individual sensors last week. Also, I'm going to capture 2 data from DHT11 and MPU6050 in one code. I used same codes that I used before for Arduino. Here's python code for RPi below.

import sys
import serial

port0 = "/dev/ttyACM0"

port1 = "/dev/ttyACM1"

serialFromArduino0 = serial.Serial(port0, 9600)

serialFromArduino0.flushInput()
serialFromArduino1 = serial.Serial(port1, 115200)
serialFromArduino1.flushInput()


def getSensorData0():

    print('*DHT11*')
    input1 = serialFromArduino0.readline()
    print(input1)
    tem = input1.split()[1]
    input2 = serialFromArduino0.readline()
    print(input2)
    hum = input2.split()[1]
    return (float(tem), float(hum))

def getSensorData1():

    print('*MPU-6050*')
    r_accel = serialFromArduino1.readline()
    print(r_accel)
    r_temp = serialFromArduino1.readline()
    print(r_temp)
    r_gyro = serialFromArduino1.readline()
    print(r_gyro)

    accel = r_accel.split()

    temp = r_temp.split()
    gyro = r_gyro.split()
    acc_x, acc_y, acc_z = accel[2],accel[3],accel[4]
    temp = temp[1]
    gyro_x, gyro_y, gyro_z = gyro[2],gyro[3],gyro[4]

    return(float(acc_x),float(acc_y),float(acc_z),float(temp),float(gyro_x),float(gyro_y),float(gyro_z))


def main():

    print('starting...')

    while True:

        if(serialFromArduino0.inWaiting() > 0 and serialFromArduino1.inWaiting() > 0):
            if(serialFromArduino0.readline().find('*') != -1 and serialFromArduino1.readline().find('*') != -1 and serialFromArduino1.readline().find('=')!= -1):
                tem, hum = getSensorData0()
                acc_x,acc_y,acc_z,temp,gyro_x,gyro_y,gyro_z = getSensorData1()
                print('Raw Data: ')
                print(tem,hum,acc_x,acc_y,acc_z,temp,gyro_x,gyro_y,gyro_z)
                print('\n')

if __name__ == '__main__':

    main()

Sensing delay could be set on codes for Arduino, and delays for 2 sensors are good to be same. With modifying a few lines from this code, we can send data to ThingSpeak as we did with Temperature sensor.


This opensource API has a limitation. It only can capture data in every 15sec. However, I could just check the data flows properly.


Result screen on terminal looks like this.




2015년 7월 23일 목요일

[5th Week] DHT11 Temperature & Humidity Sensor

One of sensors I selected for my testing is temperature sensor. DHT11 includes temperature sensor, and humidity sensor.
Here's DHT11 board. Originally, it is just blue unit on the top with 4 pins, and it should be connected with resistor. However, this consists resistor in its board, and has only 3 pins except useless pin.
I connected it to Arduino board, and pin connection is like this.
(Arduino <-> DHT11)
5V <-> + (VCC)
GND <-> - (GND)
DIGITAL 2 <-> DATA

From now on, I can check data from sensor on Arduino with this code below. We can use DHT11 library for Arduino. It could be easily found in the website.

#include <DHT11.h>
int pin=2;
DHT11 dht11(pin); 
void setup()
{
   Serial.begin(9600);
  while (!Serial) {
      ; // wait for serial port to connect. Needed for Leonardo only
    }
}

void loop()
{
  int err;
  float temp, humi;
  if((err=dht11.read(humi, temp))==0)
  {
    Serial.println("*DHT11*");
    Serial.print("temperature: ");
    Serial.println(temp);
    Serial.print("humidity: ");
    Serial.println(humi);
  }
  else
  {
    Serial.println();
    Serial.print("Error No :");
    Serial.print(err);
    Serial.println();    
  }
  delay(1000); //delay for reread
}

With this, data is sent to RPi through serial connection. For capturing data on RPi, this python code can work.

import sys
import serial

port = "/dev/ttyACM0"

serialFromArduino = serial.Serial(port, 9600)
serialFromArduino.flushInput()

def getSensorData():

    print('*DHT11*')
    input1 = serialFromArduino.readline()
    print(input1)
    tem = input1.split()[1]
    input2 = serialFromArduino.readline()
    print(input2)
    hum = input2.split()[1]
    return (float(tem), float(hum))

def main():

    print('starting...')

    while True:

        if(serialFromArduino.inWaiting() > 0):
            if(serialFromArduino.readline().find('*') != -1):
                tem, hum = getSensorData()
            
if __name__ == '__main__':
    main()

Result looks like this.

[5th Week] MPU-6050 Accelerometer & Gyro Sensor (+Temperature)

One of sensors I selected for my testing is accelerometer. MPU-6050 includes accelerometer, gyro sensor, and temperature sensor. It looks quite simple to be tested on my Arduino and RPi.
Here's MPU-6050. It has board, and headers. For it's proper operation, it should be soldered.
After soldering, I connected it to Arduino board. Pin connection is like this below.
(Arduino <-> MPU-6050)
3.3V <-> VCC
GND <-> GND
Analog IN A4 <-> SDA
Analog IN A5 <-> SCL

From now on, I can check data from sensor on Arduino with this code below. I modified some lines from original code.

// MPU-6050 Accelerometer + Gyro
// -----------------------------
//
// By arduino.cc user "Krodal".
//
// June 2012
//      first version
// July 2013 
//      The 'int' in the union for the x,y,z
//      changed into int16_t to be compatible
//      with Arduino Due.
//
// Open Source / Public Domain
//
// Using Arduino 1.0.1
// It will not work with an older version, 
// since Wire.endTransmission() uses a parameter 
// to hold or release the I2C bus.
//
// Documentation:
// - The InvenSense documents:
//   - "MPU-6000 and MPU-6050 Product Specification",
//     PS-MPU-6000A.pdf
//   - "MPU-6000 and MPU-6050 Register Map and Descriptions",
//     RM-MPU-6000A.pdf or RS-MPU-6000A.pdf
//   - "MPU-6000/MPU-6050 9-Axis Evaluation Board User Guide"
//     AN-MPU-6000EVB.pdf
// 
// The accuracy is 16-bits.
//
// Temperature sensor from -40 to +85 degrees Celsius
//   340 per degrees, -512 at 35 degrees.
//
// At power-up, all registers are zero, except these two:
//      Register 0x6B (PWR_MGMT_2) = 0x40  (I read zero).
//      Register 0x75 (WHO_AM_I)   = 0x68.
// 

#include <Wire.h>

// The name of the sensor is "MPU-6050".
// For program code, I omit the '-', 
// therefor I use the name "MPU6050....".

// Register names according to the datasheet.
// According to the InvenSense document 
// "MPU-6000 and MPU-6050 Register Map 
// and Descriptions Revision 3.2", there are no registers
// at 0x02 ... 0x18, but according other information 
// the registers in that unknown area are for gain 
// and offsets.
// 
#define MPU6050_AUX_VDDIO          0x01   // R/W
#define MPU6050_SMPLRT_DIV         0x19   // R/W
#define MPU6050_CONFIG             0x1A   // R/W
#define MPU6050_GYRO_CONFIG        0x1B   // R/W
#define MPU6050_ACCEL_CONFIG       0x1C   // R/W
#define MPU6050_FF_THR             0x1D   // R/W
#define MPU6050_FF_DUR             0x1E   // R/W
#define MPU6050_MOT_THR            0x1F   // R/W
#define MPU6050_MOT_DUR            0x20   // R/W
#define MPU6050_ZRMOT_THR          0x21   // R/W
#define MPU6050_ZRMOT_DUR          0x22   // R/W
#define MPU6050_FIFO_EN            0x23   // R/W
#define MPU6050_I2C_MST_CTRL       0x24   // R/W
#define MPU6050_I2C_SLV0_ADDR      0x25   // R/W
#define MPU6050_I2C_SLV0_REG       0x26   // R/W
#define MPU6050_I2C_SLV0_CTRL      0x27   // R/W
#define MPU6050_I2C_SLV1_ADDR      0x28   // R/W
#define MPU6050_I2C_SLV1_REG       0x29   // R/W
#define MPU6050_I2C_SLV1_CTRL      0x2A   // R/W
#define MPU6050_I2C_SLV2_ADDR      0x2B   // R/W
#define MPU6050_I2C_SLV2_REG       0x2C   // R/W
#define MPU6050_I2C_SLV2_CTRL      0x2D   // R/W
#define MPU6050_I2C_SLV3_ADDR      0x2E   // R/W
#define MPU6050_I2C_SLV3_REG       0x2F   // R/W
#define MPU6050_I2C_SLV3_CTRL      0x30   // R/W
#define MPU6050_I2C_SLV4_ADDR      0x31   // R/W
#define MPU6050_I2C_SLV4_REG       0x32   // R/W
#define MPU6050_I2C_SLV4_DO        0x33   // R/W
#define MPU6050_I2C_SLV4_CTRL      0x34   // R/W
#define MPU6050_I2C_SLV4_DI        0x35   // R  
#define MPU6050_I2C_MST_STATUS     0x36   // R
#define MPU6050_INT_PIN_CFG        0x37   // R/W
#define MPU6050_INT_ENABLE         0x38   // R/W
#define MPU6050_INT_STATUS         0x3A   // R  
#define MPU6050_ACCEL_XOUT_H       0x3B   // R  
#define MPU6050_ACCEL_XOUT_L       0x3C   // R  
#define MPU6050_ACCEL_YOUT_H       0x3D   // R  
#define MPU6050_ACCEL_YOUT_L       0x3E   // R  
#define MPU6050_ACCEL_ZOUT_H       0x3F   // R  
#define MPU6050_ACCEL_ZOUT_L       0x40   // R  
#define MPU6050_TEMP_OUT_H         0x41   // R  
#define MPU6050_TEMP_OUT_L         0x42   // R  
#define MPU6050_GYRO_XOUT_H        0x43   // R  
#define MPU6050_GYRO_XOUT_L        0x44   // R  
#define MPU6050_GYRO_YOUT_H        0x45   // R  
#define MPU6050_GYRO_YOUT_L        0x46   // R  
#define MPU6050_GYRO_ZOUT_H        0x47   // R  
#define MPU6050_GYRO_ZOUT_L        0x48   // R  
#define MPU6050_EXT_SENS_DATA_00   0x49   // R  
#define MPU6050_EXT_SENS_DATA_01   0x4A   // R  
#define MPU6050_EXT_SENS_DATA_02   0x4B   // R  
#define MPU6050_EXT_SENS_DATA_03   0x4C   // R  
#define MPU6050_EXT_SENS_DATA_04   0x4D   // R  
#define MPU6050_EXT_SENS_DATA_05   0x4E   // R  
#define MPU6050_EXT_SENS_DATA_06   0x4F   // R  
#define MPU6050_EXT_SENS_DATA_07   0x50   // R  
#define MPU6050_EXT_SENS_DATA_08   0x51   // R  
#define MPU6050_EXT_SENS_DATA_09   0x52   // R  
#define MPU6050_EXT_SENS_DATA_10   0x53   // R  
#define MPU6050_EXT_SENS_DATA_11   0x54   // R  
#define MPU6050_EXT_SENS_DATA_12   0x55   // R  
#define MPU6050_EXT_SENS_DATA_13   0x56   // R  
#define MPU6050_EXT_SENS_DATA_14   0x57   // R  
#define MPU6050_EXT_SENS_DATA_15   0x58   // R  
#define MPU6050_EXT_SENS_DATA_16   0x59   // R  
#define MPU6050_EXT_SENS_DATA_17   0x5A   // R  
#define MPU6050_EXT_SENS_DATA_18   0x5B   // R  
#define MPU6050_EXT_SENS_DATA_19   0x5C   // R  
#define MPU6050_EXT_SENS_DATA_20   0x5D   // R  
#define MPU6050_EXT_SENS_DATA_21   0x5E   // R  
#define MPU6050_EXT_SENS_DATA_22   0x5F   // R  
#define MPU6050_EXT_SENS_DATA_23   0x60   // R  
#define MPU6050_MOT_DETECT_STATUS  0x61   // R  
#define MPU6050_I2C_SLV0_DO        0x63   // R/W
#define MPU6050_I2C_SLV1_DO        0x64   // R/W
#define MPU6050_I2C_SLV2_DO        0x65   // R/W
#define MPU6050_I2C_SLV3_DO        0x66   // R/W
#define MPU6050_I2C_MST_DELAY_CTRL 0x67   // R/W
#define MPU6050_SIGNAL_PATH_RESET  0x68   // R/W
#define MPU6050_MOT_DETECT_CTRL    0x69   // R/W
#define MPU6050_USER_CTRL          0x6A   // R/W
#define MPU6050_PWR_MGMT_1         0x6B   // R/W
#define MPU6050_PWR_MGMT_2         0x6C   // R/W
#define MPU6050_FIFO_COUNTH        0x72   // R/W
#define MPU6050_FIFO_COUNTL        0x73   // R/W
#define MPU6050_FIFO_R_W           0x74   // R/W
#define MPU6050_WHO_AM_I           0x75   // R

// Defines for the bits, to be able to change 
// between bit number and binary definition.
// By using the bit number, programming the sensor 
// is like programming the AVR microcontroller.
// But instead of using "(1<<X)", or "_BV(X)", 
// the Arduino "bit(X)" is used.
#define MPU6050_D0 0
#define MPU6050_D1 1
#define MPU6050_D2 2
#define MPU6050_D3 3
#define MPU6050_D4 4
#define MPU6050_D5 5
#define MPU6050_D6 6
#define MPU6050_D7 7

// AUX_VDDIO Register
#define MPU6050_AUX_VDDIO MPU6050_D7  // I2C high: 1=VDD, 0=VLOGIC

// CONFIG Register
// DLPF is Digital Low Pass Filter for both gyro and accelerometers.
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_DLPF_CFG0     MPU6050_D0
#define MPU6050_DLPF_CFG1     MPU6050_D1
#define MPU6050_DLPF_CFG2     MPU6050_D2
#define MPU6050_EXT_SYNC_SET0 MPU6050_D3
#define MPU6050_EXT_SYNC_SET1 MPU6050_D4
#define MPU6050_EXT_SYNC_SET2 MPU6050_D5

// Combined definitions for the EXT_SYNC_SET values
#define MPU6050_EXT_SYNC_SET_0 (0)
#define MPU6050_EXT_SYNC_SET_1 (bit(MPU6050_EXT_SYNC_SET0))
#define MPU6050_EXT_SYNC_SET_2 (bit(MPU6050_EXT_SYNC_SET1))
#define MPU6050_EXT_SYNC_SET_3 (bit(MPU6050_EXT_SYNC_SET1)|bit(MPU6050_EXT_SYNC_SET0))
#define MPU6050_EXT_SYNC_SET_4 (bit(MPU6050_EXT_SYNC_SET2))
#define MPU6050_EXT_SYNC_SET_5 (bit(MPU6050_EXT_SYNC_SET2)|bit(MPU6050_EXT_SYNC_SET0))
#define MPU6050_EXT_SYNC_SET_6 (bit(MPU6050_EXT_SYNC_SET2)|bit(MPU6050_EXT_SYNC_SET1))
#define MPU6050_EXT_SYNC_SET_7 (bit(MPU6050_EXT_SYNC_SET2)|bit(MPU6050_EXT_SYNC_SET1)|bit(MPU6050_EXT_SYNC_SET0))

// Alternative names for the combined definitions.
#define MPU6050_EXT_SYNC_DISABLED     MPU6050_EXT_SYNC_SET_0
#define MPU6050_EXT_SYNC_TEMP_OUT_L   MPU6050_EXT_SYNC_SET_1
#define MPU6050_EXT_SYNC_GYRO_XOUT_L  MPU6050_EXT_SYNC_SET_2
#define MPU6050_EXT_SYNC_GYRO_YOUT_L  MPU6050_EXT_SYNC_SET_3
#define MPU6050_EXT_SYNC_GYRO_ZOUT_L  MPU6050_EXT_SYNC_SET_4
#define MPU6050_EXT_SYNC_ACCEL_XOUT_L MPU6050_EXT_SYNC_SET_5
#define MPU6050_EXT_SYNC_ACCEL_YOUT_L MPU6050_EXT_SYNC_SET_6
#define MPU6050_EXT_SYNC_ACCEL_ZOUT_L MPU6050_EXT_SYNC_SET_7

// Combined definitions for the DLPF_CFG values
#define MPU6050_DLPF_CFG_0 (0)
#define MPU6050_DLPF_CFG_1 (bit(MPU6050_DLPF_CFG0))
#define MPU6050_DLPF_CFG_2 (bit(MPU6050_DLPF_CFG1))
#define MPU6050_DLPF_CFG_3 (bit(MPU6050_DLPF_CFG1)|bit(MPU6050_DLPF_CFG0))
#define MPU6050_DLPF_CFG_4 (bit(MPU6050_DLPF_CFG2))
#define MPU6050_DLPF_CFG_5 (bit(MPU6050_DLPF_CFG2)|bit(MPU6050_DLPF_CFG0))
#define MPU6050_DLPF_CFG_6 (bit(MPU6050_DLPF_CFG2)|bit(MPU6050_DLPF_CFG1))
#define MPU6050_DLPF_CFG_7 (bit(MPU6050_DLPF_CFG2)|bit(MPU6050_DLPF_CFG1)|bit(MPU6050_DLPF_CFG0))

// Alternative names for the combined definitions
// This name uses the bandwidth (Hz) for the accelometer,
// for the gyro the bandwidth is almost the same.
#define MPU6050_DLPF_260HZ    MPU6050_DLPF_CFG_0
#define MPU6050_DLPF_184HZ    MPU6050_DLPF_CFG_1
#define MPU6050_DLPF_94HZ     MPU6050_DLPF_CFG_2
#define MPU6050_DLPF_44HZ     MPU6050_DLPF_CFG_3
#define MPU6050_DLPF_21HZ     MPU6050_DLPF_CFG_4
#define MPU6050_DLPF_10HZ     MPU6050_DLPF_CFG_5
#define MPU6050_DLPF_5HZ      MPU6050_DLPF_CFG_6
#define MPU6050_DLPF_RESERVED MPU6050_DLPF_CFG_7

// GYRO_CONFIG Register
// The XG_ST, YG_ST, ZG_ST are bits for selftest.
// The FS_SEL sets the range for the gyro.
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_FS_SEL0 MPU6050_D3
#define MPU6050_FS_SEL1 MPU6050_D4
#define MPU6050_ZG_ST   MPU6050_D5
#define MPU6050_YG_ST   MPU6050_D6
#define MPU6050_XG_ST   MPU6050_D7

// Combined definitions for the FS_SEL values
#define MPU6050_FS_SEL_0 (0)
#define MPU6050_FS_SEL_1 (bit(MPU6050_FS_SEL0))
#define MPU6050_FS_SEL_2 (bit(MPU6050_FS_SEL1))
#define MPU6050_FS_SEL_3 (bit(MPU6050_FS_SEL1)|bit(MPU6050_FS_SEL0))

// Alternative names for the combined definitions
// The name uses the range in degrees per second.
#define MPU6050_FS_SEL_250  MPU6050_FS_SEL_0
#define MPU6050_FS_SEL_500  MPU6050_FS_SEL_1
#define MPU6050_FS_SEL_1000 MPU6050_FS_SEL_2
#define MPU6050_FS_SEL_2000 MPU6050_FS_SEL_3

// ACCEL_CONFIG Register
// The XA_ST, YA_ST, ZA_ST are bits for selftest.
// The AFS_SEL sets the range for the accelerometer.
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_ACCEL_HPF0 MPU6050_D0
#define MPU6050_ACCEL_HPF1 MPU6050_D1
#define MPU6050_ACCEL_HPF2 MPU6050_D2
#define MPU6050_AFS_SEL0   MPU6050_D3
#define MPU6050_AFS_SEL1   MPU6050_D4
#define MPU6050_ZA_ST      MPU6050_D5
#define MPU6050_YA_ST      MPU6050_D6
#define MPU6050_XA_ST      MPU6050_D7

// Combined definitions for the ACCEL_HPF values
#define MPU6050_ACCEL_HPF_0 (0)
#define MPU6050_ACCEL_HPF_1 (bit(MPU6050_ACCEL_HPF0))
#define MPU6050_ACCEL_HPF_2 (bit(MPU6050_ACCEL_HPF1))
#define MPU6050_ACCEL_HPF_3 (bit(MPU6050_ACCEL_HPF1)|bit(MPU6050_ACCEL_HPF0))
#define MPU6050_ACCEL_HPF_4 (bit(MPU6050_ACCEL_HPF2))
#define MPU6050_ACCEL_HPF_7 (bit(MPU6050_ACCEL_HPF2)|bit(MPU6050_ACCEL_HPF1)|bit(MPU6050_ACCEL_HPF0))

// Alternative names for the combined definitions
// The name uses the Cut-off frequency.
#define MPU6050_ACCEL_HPF_RESET  MPU6050_ACCEL_HPF_0
#define MPU6050_ACCEL_HPF_5HZ    MPU6050_ACCEL_HPF_1
#define MPU6050_ACCEL_HPF_2_5HZ  MPU6050_ACCEL_HPF_2
#define MPU6050_ACCEL_HPF_1_25HZ MPU6050_ACCEL_HPF_3
#define MPU6050_ACCEL_HPF_0_63HZ MPU6050_ACCEL_HPF_4
#define MPU6050_ACCEL_HPF_HOLD   MPU6050_ACCEL_HPF_7

// Combined definitions for the AFS_SEL values
#define MPU6050_AFS_SEL_0 (0)
#define MPU6050_AFS_SEL_1 (bit(MPU6050_AFS_SEL0))
#define MPU6050_AFS_SEL_2 (bit(MPU6050_AFS_SEL1))
#define MPU6050_AFS_SEL_3 (bit(MPU6050_AFS_SEL1)|bit(MPU6050_AFS_SEL0))

// Alternative names for the combined definitions
// The name uses the full scale range for the accelerometer.
#define MPU6050_AFS_SEL_2G  MPU6050_AFS_SEL_0
#define MPU6050_AFS_SEL_4G  MPU6050_AFS_SEL_1
#define MPU6050_AFS_SEL_8G  MPU6050_AFS_SEL_2
#define MPU6050_AFS_SEL_16G MPU6050_AFS_SEL_3

// FIFO_EN Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_SLV0_FIFO_EN  MPU6050_D0
#define MPU6050_SLV1_FIFO_EN  MPU6050_D1
#define MPU6050_SLV2_FIFO_EN  MPU6050_D2
#define MPU6050_ACCEL_FIFO_EN MPU6050_D3
#define MPU6050_ZG_FIFO_EN    MPU6050_D4
#define MPU6050_YG_FIFO_EN    MPU6050_D5
#define MPU6050_XG_FIFO_EN    MPU6050_D6
#define MPU6050_TEMP_FIFO_EN  MPU6050_D7

// I2C_MST_CTRL Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_MST_CLK0  MPU6050_D0
#define MPU6050_I2C_MST_CLK1  MPU6050_D1
#define MPU6050_I2C_MST_CLK2  MPU6050_D2
#define MPU6050_I2C_MST_CLK3  MPU6050_D3
#define MPU6050_I2C_MST_P_NSR MPU6050_D4
#define MPU6050_SLV_3_FIFO_EN MPU6050_D5
#define MPU6050_WAIT_FOR_ES   MPU6050_D6
#define MPU6050_MULT_MST_EN   MPU6050_D7

// Combined definitions for the I2C_MST_CLK
#define MPU6050_I2C_MST_CLK_0 (0)
#define MPU6050_I2C_MST_CLK_1  (bit(MPU6050_I2C_MST_CLK0))
#define MPU6050_I2C_MST_CLK_2  (bit(MPU6050_I2C_MST_CLK1))
#define MPU6050_I2C_MST_CLK_3  (bit(MPU6050_I2C_MST_CLK1)|bit(MPU6050_I2C_MST_CLK0))
#define MPU6050_I2C_MST_CLK_4  (bit(MPU6050_I2C_MST_CLK2))
#define MPU6050_I2C_MST_CLK_5  (bit(MPU6050_I2C_MST_CLK2)|bit(MPU6050_I2C_MST_CLK0))
#define MPU6050_I2C_MST_CLK_6  (bit(MPU6050_I2C_MST_CLK2)|bit(MPU6050_I2C_MST_CLK1))
#define MPU6050_I2C_MST_CLK_7  (bit(MPU6050_I2C_MST_CLK2)|bit(MPU6050_I2C_MST_CLK1)|bit(MPU6050_I2C_MST_CLK0))
#define MPU6050_I2C_MST_CLK_8  (bit(MPU6050_I2C_MST_CLK3))
#define MPU6050_I2C_MST_CLK_9  (bit(MPU6050_I2C_MST_CLK3)|bit(MPU6050_I2C_MST_CLK0))
#define MPU6050_I2C_MST_CLK_10 (bit(MPU6050_I2C_MST_CLK3)|bit(MPU6050_I2C_MST_CLK1))
#define MPU6050_I2C_MST_CLK_11 (bit(MPU6050_I2C_MST_CLK3)|bit(MPU6050_I2C_MST_CLK1)|bit(MPU6050_I2C_MST_CLK0))
#define MPU6050_I2C_MST_CLK_12 (bit(MPU6050_I2C_MST_CLK3)|bit(MPU6050_I2C_MST_CLK2))
#define MPU6050_I2C_MST_CLK_13 (bit(MPU6050_I2C_MST_CLK3)|bit(MPU6050_I2C_MST_CLK2)|bit(MPU6050_I2C_MST_CLK0))
#define MPU6050_I2C_MST_CLK_14 (bit(MPU6050_I2C_MST_CLK3)|bit(MPU6050_I2C_MST_CLK2)|bit(MPU6050_I2C_MST_CLK1))
#define MPU6050_I2C_MST_CLK_15 (bit(MPU6050_I2C_MST_CLK3)|bit(MPU6050_I2C_MST_CLK2)|bit(MPU6050_I2C_MST_CLK1)|bit(MPU6050_I2C_MST_CLK0))

// Alternative names for the combined definitions
// The names uses I2C Master Clock Speed in kHz.
#define MPU6050_I2C_MST_CLK_348KHZ MPU6050_I2C_MST_CLK_0
#define MPU6050_I2C_MST_CLK_333KHZ MPU6050_I2C_MST_CLK_1
#define MPU6050_I2C_MST_CLK_320KHZ MPU6050_I2C_MST_CLK_2
#define MPU6050_I2C_MST_CLK_308KHZ MPU6050_I2C_MST_CLK_3
#define MPU6050_I2C_MST_CLK_296KHZ MPU6050_I2C_MST_CLK_4
#define MPU6050_I2C_MST_CLK_286KHZ MPU6050_I2C_MST_CLK_5
#define MPU6050_I2C_MST_CLK_276KHZ MPU6050_I2C_MST_CLK_6
#define MPU6050_I2C_MST_CLK_267KHZ MPU6050_I2C_MST_CLK_7
#define MPU6050_I2C_MST_CLK_258KHZ MPU6050_I2C_MST_CLK_8
#define MPU6050_I2C_MST_CLK_500KHZ MPU6050_I2C_MST_CLK_9
#define MPU6050_I2C_MST_CLK_471KHZ MPU6050_I2C_MST_CLK_10
#define MPU6050_I2C_MST_CLK_444KHZ MPU6050_I2C_MST_CLK_11
#define MPU6050_I2C_MST_CLK_421KHZ MPU6050_I2C_MST_CLK_12
#define MPU6050_I2C_MST_CLK_400KHZ MPU6050_I2C_MST_CLK_13
#define MPU6050_I2C_MST_CLK_381KHZ MPU6050_I2C_MST_CLK_14
#define MPU6050_I2C_MST_CLK_364KHZ MPU6050_I2C_MST_CLK_15

// I2C_SLV0_ADDR Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV0_RW MPU6050_D7

// I2C_SLV0_CTRL Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV0_LEN0    MPU6050_D0
#define MPU6050_I2C_SLV0_LEN1    MPU6050_D1
#define MPU6050_I2C_SLV0_LEN2    MPU6050_D2
#define MPU6050_I2C_SLV0_LEN3    MPU6050_D3
#define MPU6050_I2C_SLV0_GRP     MPU6050_D4
#define MPU6050_I2C_SLV0_REG_DIS MPU6050_D5
#define MPU6050_I2C_SLV0_BYTE_SW MPU6050_D6
#define MPU6050_I2C_SLV0_EN      MPU6050_D7

// A mask for the length
#define MPU6050_I2C_SLV0_LEN_MASK 0x0F

// I2C_SLV1_ADDR Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV1_RW MPU6050_D7

// I2C_SLV1_CTRL Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV1_LEN0    MPU6050_D0
#define MPU6050_I2C_SLV1_LEN1    MPU6050_D1
#define MPU6050_I2C_SLV1_LEN2    MPU6050_D2
#define MPU6050_I2C_SLV1_LEN3    MPU6050_D3
#define MPU6050_I2C_SLV1_GRP     MPU6050_D4
#define MPU6050_I2C_SLV1_REG_DIS MPU6050_D5
#define MPU6050_I2C_SLV1_BYTE_SW MPU6050_D6
#define MPU6050_I2C_SLV1_EN      MPU6050_D7

// A mask for the length
#define MPU6050_I2C_SLV1_LEN_MASK 0x0F

// I2C_SLV2_ADDR Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV2_RW MPU6050_D7

// I2C_SLV2_CTRL Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV2_LEN0    MPU6050_D0
#define MPU6050_I2C_SLV2_LEN1    MPU6050_D1
#define MPU6050_I2C_SLV2_LEN2    MPU6050_D2
#define MPU6050_I2C_SLV2_LEN3    MPU6050_D3
#define MPU6050_I2C_SLV2_GRP     MPU6050_D4
#define MPU6050_I2C_SLV2_REG_DIS MPU6050_D5
#define MPU6050_I2C_SLV2_BYTE_SW MPU6050_D6
#define MPU6050_I2C_SLV2_EN      MPU6050_D7

// A mask for the length
#define MPU6050_I2C_SLV2_LEN_MASK 0x0F

// I2C_SLV3_ADDR Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV3_RW MPU6050_D7

// I2C_SLV3_CTRL Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV3_LEN0    MPU6050_D0
#define MPU6050_I2C_SLV3_LEN1    MPU6050_D1
#define MPU6050_I2C_SLV3_LEN2    MPU6050_D2
#define MPU6050_I2C_SLV3_LEN3    MPU6050_D3
#define MPU6050_I2C_SLV3_GRP     MPU6050_D4
#define MPU6050_I2C_SLV3_REG_DIS MPU6050_D5
#define MPU6050_I2C_SLV3_BYTE_SW MPU6050_D6
#define MPU6050_I2C_SLV3_EN      MPU6050_D7

// A mask for the length
#define MPU6050_I2C_SLV3_LEN_MASK 0x0F

// I2C_SLV4_ADDR Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV4_RW MPU6050_D7

// I2C_SLV4_CTRL Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_MST_DLY0     MPU6050_D0
#define MPU6050_I2C_MST_DLY1     MPU6050_D1
#define MPU6050_I2C_MST_DLY2     MPU6050_D2
#define MPU6050_I2C_MST_DLY3     MPU6050_D3
#define MPU6050_I2C_MST_DLY4     MPU6050_D4
#define MPU6050_I2C_SLV4_REG_DIS MPU6050_D5
#define MPU6050_I2C_SLV4_INT_EN  MPU6050_D6
#define MPU6050_I2C_SLV4_EN      MPU6050_D7

// A mask for the delay
#define MPU6050_I2C_MST_DLY_MASK 0x1F

// I2C_MST_STATUS Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV0_NACK MPU6050_D0
#define MPU6050_I2C_SLV1_NACK MPU6050_D1
#define MPU6050_I2C_SLV2_NACK MPU6050_D2
#define MPU6050_I2C_SLV3_NACK MPU6050_D3
#define MPU6050_I2C_SLV4_NACK MPU6050_D4
#define MPU6050_I2C_LOST_ARB  MPU6050_D5
#define MPU6050_I2C_SLV4_DONE MPU6050_D6
#define MPU6050_PASS_THROUGH  MPU6050_D7

// I2C_PIN_CFG Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_CLKOUT_EN       MPU6050_D0
#define MPU6050_I2C_BYPASS_EN   MPU6050_D1
#define MPU6050_FSYNC_INT_EN    MPU6050_D2
#define MPU6050_FSYNC_INT_LEVEL MPU6050_D3
#define MPU6050_INT_RD_CLEAR    MPU6050_D4
#define MPU6050_LATCH_INT_EN    MPU6050_D5
#define MPU6050_INT_OPEN        MPU6050_D6
#define MPU6050_INT_LEVEL       MPU6050_D7

// INT_ENABLE Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_DATA_RDY_EN    MPU6050_D0
#define MPU6050_I2C_MST_INT_EN MPU6050_D3
#define MPU6050_FIFO_OFLOW_EN  MPU6050_D4
#define MPU6050_ZMOT_EN        MPU6050_D5
#define MPU6050_MOT_EN         MPU6050_D6
#define MPU6050_FF_EN          MPU6050_D7

// INT_STATUS Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_DATA_RDY_INT   MPU6050_D0
#define MPU6050_I2C_MST_INT    MPU6050_D3
#define MPU6050_FIFO_OFLOW_INT MPU6050_D4
#define MPU6050_ZMOT_INT       MPU6050_D5
#define MPU6050_MOT_INT        MPU6050_D6
#define MPU6050_FF_INT         MPU6050_D7

// MOT_DETECT_STATUS Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_MOT_ZRMOT MPU6050_D0
#define MPU6050_MOT_ZPOS  MPU6050_D2
#define MPU6050_MOT_ZNEG  MPU6050_D3
#define MPU6050_MOT_YPOS  MPU6050_D4
#define MPU6050_MOT_YNEG  MPU6050_D5
#define MPU6050_MOT_XPOS  MPU6050_D6
#define MPU6050_MOT_XNEG  MPU6050_D7

// IC2_MST_DELAY_CTRL Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV0_DLY_EN MPU6050_D0
#define MPU6050_I2C_SLV1_DLY_EN MPU6050_D1
#define MPU6050_I2C_SLV2_DLY_EN MPU6050_D2
#define MPU6050_I2C_SLV3_DLY_EN MPU6050_D3
#define MPU6050_I2C_SLV4_DLY_EN MPU6050_D4
#define MPU6050_DELAY_ES_SHADOW MPU6050_D7

// SIGNAL_PATH_RESET Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_TEMP_RESET  MPU6050_D0
#define MPU6050_ACCEL_RESET MPU6050_D1
#define MPU6050_GYRO_RESET  MPU6050_D2

// MOT_DETECT_CTRL Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_MOT_COUNT0      MPU6050_D0
#define MPU6050_MOT_COUNT1      MPU6050_D1
#define MPU6050_FF_COUNT0       MPU6050_D2
#define MPU6050_FF_COUNT1       MPU6050_D3
#define MPU6050_ACCEL_ON_DELAY0 MPU6050_D4
#define MPU6050_ACCEL_ON_DELAY1 MPU6050_D5

// Combined definitions for the MOT_COUNT
#define MPU6050_MOT_COUNT_0 (0)
#define MPU6050_MOT_COUNT_1 (bit(MPU6050_MOT_COUNT0))
#define MPU6050_MOT_COUNT_2 (bit(MPU6050_MOT_COUNT1))
#define MPU6050_MOT_COUNT_3 (bit(MPU6050_MOT_COUNT1)|bit(MPU6050_MOT_COUNT0))

// Alternative names for the combined definitions
#define MPU6050_MOT_COUNT_RESET MPU6050_MOT_COUNT_0

// Combined definitions for the FF_COUNT
#define MPU6050_FF_COUNT_0 (0)
#define MPU6050_FF_COUNT_1 (bit(MPU6050_FF_COUNT0))
#define MPU6050_FF_COUNT_2 (bit(MPU6050_FF_COUNT1))
#define MPU6050_FF_COUNT_3 (bit(MPU6050_FF_COUNT1)|bit(MPU6050_FF_COUNT0))

// Alternative names for the combined definitions
#define MPU6050_FF_COUNT_RESET MPU6050_FF_COUNT_0

// Combined definitions for the ACCEL_ON_DELAY
#define MPU6050_ACCEL_ON_DELAY_0 (0)
#define MPU6050_ACCEL_ON_DELAY_1 (bit(MPU6050_ACCEL_ON_DELAY0))
#define MPU6050_ACCEL_ON_DELAY_2 (bit(MPU6050_ACCEL_ON_DELAY1))
#define MPU6050_ACCEL_ON_DELAY_3 (bit(MPU6050_ACCEL_ON_DELAY1)|bit(MPU6050_ACCEL_ON_DELAY0))

// Alternative names for the ACCEL_ON_DELAY
#define MPU6050_ACCEL_ON_DELAY_0MS MPU6050_ACCEL_ON_DELAY_0
#define MPU6050_ACCEL_ON_DELAY_1MS MPU6050_ACCEL_ON_DELAY_1
#define MPU6050_ACCEL_ON_DELAY_2MS MPU6050_ACCEL_ON_DELAY_2
#define MPU6050_ACCEL_ON_DELAY_3MS MPU6050_ACCEL_ON_DELAY_3

// USER_CTRL Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_SIG_COND_RESET MPU6050_D0
#define MPU6050_I2C_MST_RESET  MPU6050_D1
#define MPU6050_FIFO_RESET     MPU6050_D2
#define MPU6050_I2C_IF_DIS     MPU6050_D4   // must be 0 for MPU-6050
#define MPU6050_I2C_MST_EN     MPU6050_D5
#define MPU6050_FIFO_EN        MPU6050_D6

// PWR_MGMT_1 Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_CLKSEL0      MPU6050_D0
#define MPU6050_CLKSEL1      MPU6050_D1
#define MPU6050_CLKSEL2      MPU6050_D2
#define MPU6050_TEMP_DIS     MPU6050_D3    // 1: disable temperature sensor
#define MPU6050_CYCLE        MPU6050_D5    // 1: sample and sleep
#define MPU6050_SLEEP        MPU6050_D6    // 1: sleep mode
#define MPU6050_DEVICE_RESET MPU6050_D7    // 1: reset to default values

// Combined definitions for the CLKSEL
#define MPU6050_CLKSEL_0 (0)
#define MPU6050_CLKSEL_1 (bit(MPU6050_CLKSEL0))
#define MPU6050_CLKSEL_2 (bit(MPU6050_CLKSEL1))
#define MPU6050_CLKSEL_3 (bit(MPU6050_CLKSEL1)|bit(MPU6050_CLKSEL0))
#define MPU6050_CLKSEL_4 (bit(MPU6050_CLKSEL2))
#define MPU6050_CLKSEL_5 (bit(MPU6050_CLKSEL2)|bit(MPU6050_CLKSEL0))
#define MPU6050_CLKSEL_6 (bit(MPU6050_CLKSEL2)|bit(MPU6050_CLKSEL1))
#define MPU6050_CLKSEL_7 (bit(MPU6050_CLKSEL2)|bit(MPU6050_CLKSEL1)|bit(MPU6050_CLKSEL0))

// Alternative names for the combined definitions
#define MPU6050_CLKSEL_INTERNAL    MPU6050_CLKSEL_0
#define MPU6050_CLKSEL_X           MPU6050_CLKSEL_1
#define MPU6050_CLKSEL_Y           MPU6050_CLKSEL_2
#define MPU6050_CLKSEL_Z           MPU6050_CLKSEL_3
#define MPU6050_CLKSEL_EXT_32KHZ   MPU6050_CLKSEL_4
#define MPU6050_CLKSEL_EXT_19_2MHZ MPU6050_CLKSEL_5
#define MPU6050_CLKSEL_RESERVED    MPU6050_CLKSEL_6
#define MPU6050_CLKSEL_STOP        MPU6050_CLKSEL_7

// PWR_MGMT_2 Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_STBY_ZG       MPU6050_D0
#define MPU6050_STBY_YG       MPU6050_D1
#define MPU6050_STBY_XG       MPU6050_D2
#define MPU6050_STBY_ZA       MPU6050_D3
#define MPU6050_STBY_YA       MPU6050_D4
#define MPU6050_STBY_XA       MPU6050_D5
#define MPU6050_LP_WAKE_CTRL0 MPU6050_D6
#define MPU6050_LP_WAKE_CTRL1 MPU6050_D7

// Combined definitions for the LP_WAKE_CTRL
#define MPU6050_LP_WAKE_CTRL_0 (0)
#define MPU6050_LP_WAKE_CTRL_1 (bit(MPU6050_LP_WAKE_CTRL0))
#define MPU6050_LP_WAKE_CTRL_2 (bit(MPU6050_LP_WAKE_CTRL1))
#define MPU6050_LP_WAKE_CTRL_3 (bit(MPU6050_LP_WAKE_CTRL1)|bit(MPU6050_LP_WAKE_CTRL0))

// Alternative names for the combined definitions
// The names uses the Wake-up Frequency.
#define MPU6050_LP_WAKE_1_25HZ MPU6050_LP_WAKE_CTRL_0
#define MPU6050_LP_WAKE_2_5HZ  MPU6050_LP_WAKE_CTRL_1
#define MPU6050_LP_WAKE_5HZ    MPU6050_LP_WAKE_CTRL_2
#define MPU6050_LP_WAKE_10HZ   MPU6050_LP_WAKE_CTRL_3

// Default I2C address for the MPU-6050 is 0x68.
// But only if the AD0 pin is low.
// Some sensor boards have AD0 high, and the
// I2C address thus becomes 0x69.
#define MPU6050_I2C_ADDRESS 0x68

// Declaring an union for the registers and the axis values.
// The byte order does not match the byte order of 
// the compiler and AVR chip.
// The AVR chip (on the Arduino board) has the Low Byte 
// at the lower address.
// But the MPU-6050 has a different order: High Byte at
// lower address, so that has to be corrected.
// The register part "reg" is only used internally, 
// and are swapped in code.
typedef union accel_t_gyro_union
{
  struct
  {
    uint8_t x_accel_h;
    uint8_t x_accel_l;
    uint8_t y_accel_h;
    uint8_t y_accel_l;
    uint8_t z_accel_h;
    uint8_t z_accel_l;
    uint8_t t_h;
    uint8_t t_l;
    uint8_t x_gyro_h;
    uint8_t x_gyro_l;
    uint8_t y_gyro_h;
    uint8_t y_gyro_l;
    uint8_t z_gyro_h;
    uint8_t z_gyro_l;
  } reg;
  struct 
  {
    int16_t x_accel;
    int16_t y_accel;
    int16_t z_accel;
    int16_t temperature;
    int16_t x_gyro;
    int16_t y_gyro;
    int16_t z_gyro;
  } value;
};

void setup()
{      
  int error;
  uint8_t c;

  Serial.begin(115200);
  Serial.println(F("InvenSense MPU-6050"));
  Serial.println(F("June 2012"));

  // Initialize the 'Wire' class for the I2C-bus.
  Wire.begin();

  // default at power-up:
  //    Gyro at 250 degrees second
  //    Acceleration at 2g
  //    Clock source at internal 8MHz
  //    The device is in sleep mode.
  //

  error = MPU6050_read (MPU6050_WHO_AM_I, &c, 1);
  Serial.print(F("WHO_AM_I : "));
  Serial.print(c,HEX);
  Serial.print(F(", error = "));
  Serial.println(error,DEC);

  // According to the datasheet, the 'sleep' bit
  // should read a '1'. But I read a '0'.
  // That bit has to be cleared, since the sensor
  // is in sleep mode at power-up. Even if the
  // bit reads '0'.
  error = MPU6050_read (MPU6050_PWR_MGMT_2, &c, 1);
  Serial.print(F("PWR_MGMT_2 : "));
  Serial.print(c,HEX);
  Serial.print(F(", error = "));
  Serial.println(error,DEC);

  // Clear the 'sleep' bit to start the sensor.
  MPU6050_write_reg (MPU6050_PWR_MGMT_1, 0);
}

void loop()
{
  int error;
  double dT;
  accel_t_gyro_union accel_t_gyro;
  
  Serial.println("*MPU-6050*");

  // Read the raw values.
  // Read 14 bytes at once, 
  // containing acceleration, temperature and gyro.
  // With the default settings of the MPU-6050,
  // there is no filter enabled, and the values
  // are not very stable.
  error = MPU6050_read (MPU6050_ACCEL_XOUT_H, (uint8_t *) &accel_t_gyro, sizeof(accel_t_gyro));
  Serial.print("Read accel, temp and gyro, error = ");
  Serial.println(error,DEC);

  // Swap all high and low bytes.
  // After this, the registers values are swapped, 
  // so the structure name like x_accel_l does no 
  // longer contain the lower byte.
  uint8_t swap;
  #define SWAP(x,y) swap = x; x = y; y = swap

  SWAP (accel_t_gyro.reg.x_accel_h, accel_t_gyro.reg.x_accel_l);
  SWAP (accel_t_gyro.reg.y_accel_h, accel_t_gyro.reg.y_accel_l);
  SWAP (accel_t_gyro.reg.z_accel_h, accel_t_gyro.reg.z_accel_l);
  SWAP (accel_t_gyro.reg.t_h, accel_t_gyro.reg.t_l);
  SWAP (accel_t_gyro.reg.x_gyro_h, accel_t_gyro.reg.x_gyro_l);
  SWAP (accel_t_gyro.reg.y_gyro_h, accel_t_gyro.reg.y_gyro_l);
  SWAP (accel_t_gyro.reg.z_gyro_h, accel_t_gyro.reg.z_gyro_l);

  // Print the raw acceleration values

  Serial.print("accel x,y,z: ");
  Serial.print(accel_t_gyro.value.x_accel, DEC);
  Serial.print(" ");
  Serial.print(accel_t_gyro.value.y_accel, DEC);
  Serial.print(" ");
  Serial.print(accel_t_gyro.value.z_accel, DEC);
  Serial.println("");

  // The temperature sensor is -40 to +85 degrees Celsius.
  // It is a signed integer.
  // According to the datasheet: 
  //   340 per degrees Celsius, -512 at 35 degrees.
  // At 0 degrees: -512 - (340 * 35) = -12412

  Serial.print(F("temperature: "));
  dT = ( (double) accel_t_gyro.value.temperature + 12412.0) / 340.0;
  Serial.print(dT, 3);
  Serial.print(F(" degrees Celsius"));
  Serial.println(F(""));

  // Print the raw gyro values.

  Serial.print("gyro x,y,z: ");
  Serial.print(accel_t_gyro.value.x_gyro, DEC);
  Serial.print(" ");
  Serial.print(accel_t_gyro.value.y_gyro, DEC);
  Serial.print(" ");
  Serial.print(accel_t_gyro.value.z_gyro, DEC);
  Serial.println("");

  delay(1000);
}

// --------------------------------------------------------
// MPU6050_read
//
// This is a common function to read multiple bytes 
// from an I2C device.
//
// It uses the boolean parameter for Wire.endTransMission()
// to be able to hold or release the I2C-bus. 
// This is implemented in Arduino 1.0.1.
//
// Only this function is used to read. 
// There is no function for a single byte.
//
int MPU6050_read(int start, uint8_t *buffer, int size)
{
  int i, n, error;

  Wire.beginTransmission(MPU6050_I2C_ADDRESS);
  n = Wire.write(start);
  if (n != 1)
    return (-10);

  n = Wire.endTransmission(false);    // hold the I2C-bus
  if (n != 0)
    return (n);

  // Third parameter is true: relase I2C-bus after data is read.
  Wire.requestFrom(MPU6050_I2C_ADDRESS, size, true);
  i = 0;
  while(Wire.available() && i<size)
  {
    buffer[i++]=Wire.read();
  }
  if ( i != size)
    return (-11);

  return (0);  // return : no error
}

// --------------------------------------------------------
// MPU6050_write
//
// This is a common function to write multiple bytes to an I2C device.
//
// If only a single register is written,
// use the function MPU_6050_write_reg().
//
// Parameters:
//   start : Start address, use a define for the register
//   pData : A pointer to the data to write.
//   size  : The number of bytes to write.
//
// If only a single register is written, a pointer
// to the data has to be used, and the size is
// a single byte:
//   int data = 0;        // the data to write
//   MPU6050_write (MPU6050_PWR_MGMT_1, &c, 1);
//
int MPU6050_write(int start, const uint8_t *pData, int size)
{
  int n, error;

  Wire.beginTransmission(MPU6050_I2C_ADDRESS);
  n = Wire.write(start);        // write the start address
  if (n != 1)
    return (-20);

  n = Wire.write(pData, size);  // write data bytes
  if (n != size)
    return (-21);

  error = Wire.endTransmission(true); // release the I2C-bus
  if (error != 0)
    return (error);

  return (0);         // return : no error
}

// --------------------------------------------------------
// MPU6050_write_reg
//
// An extra function to write a single register.
// It is just a wrapper around the MPU_6050_write()
// function, and it is only a convenient function
// to make it easier to write a single register.
//
int MPU6050_write_reg(int reg, uint8_t data)
{
  int error;

  error = MPU6050_write(reg, &data, 1);

  return (error);
}

With this, data is sent to RPi through serial connection. For capturing data on RPi, this python code can work.

import sys
import serial

port = "/dev/ttyACM1"
serialFromArduino = serial.Serial(port, 115200)
serialFromArduino.flushInput()

def getSensorData():
    print('*MPU-6050*')
    r_accel = serialFromArduino.readline()
    print(r_accel)
    r_temp = serialFromArduino.readline()
    print(r_temp)
    r_gyro = serialFromArduino.readline()
    print(r_gyro)

    accel = r_accel.split()
    temp = r_temp.split()
    gyro = r_gyro.split()
    acc_x, acc_y, acc_z = accel[2],accel[3],accel[4]
    temp = temp[1]
    gyro_x, gyro_y, gyro_z = gyro[2],gyro[3],gyro[4]

    return(float(acc_x),float(acc_y),float(acc_z),float(temp),float(gyro_x),float(gyro_y),float(gyro_z))

def main():
    print('starting...')
    while True:
        if(serialFromArduino.inWaiting() > 0):
            if(serialFromArduino.readline().find('*') != -1 and serialFromArduino.readline().find('=') != -1):
                acc_x,acc_y,acc_z,temp,gyro_x,gyro_y,gyro_z = getSensorData()
            
if __name__ == '__main__':
    main()

Result looks like this.