2015년 8월 20일 목요일

[9th Week] Sending Alert Mail(or Text)

We can generate Alert Stream from sensor streams in Raspberry Pi. I'm going to make a visual effect for alerts. One of the methods is sending mail. I tried two methods for sending mail.
- Sending mail on python code running on Raspberry Pi.
- Sending mail on MATLAB code running on my labtop.

Second method should need receiving data from RPi. I'll use similar code with the one which I used in plotting sensor data.

There could be several codes for sending mail, and here're some example codes I used.

1) Sending mail on Python (Raspberry Pi)

import smtplib

def send(addr, s):
  server = smtplib.SMTP("smtp.gmail.com", 587)
  server.starttls()
  server.login(‘foo@gmail.com', ‘pwd')
  server.sendmail(‘
foo@gmail.com', addr, s)
  server.quit()

I put my Gmail account and password in server.login(). With this, we can easily send a mail.
**Also here's important point. We should change account setting for Rasperry Pi here (https://www.google.com/settings/security/lesssecureapps) when authentication probelm occurs unless we put correct account info and codes**

2) Sending mail on MATLAB

mail = 'foo@gmail.com';
password = 'pwd';
server = 'smtp.gmail.com';
setpref('Internet','E_mail',mail);
setpref('Internet','SMTP_Server',server);
setpref('Internet','SMTP_Username',mail);
setpref('Internet','SMTP_Password',password);

props = java.lang.System.getProperties;
props.setProperty('mail.smtp.auth','true');
props.setProperty('mail.smtp.socketFactory.class','javax.net.ssl.SSLSocketFactory');
props.setProperty('mail.smtp.socketFactory.port','465');

sendmail('addr','Alert!','Msg From MATLAB');

Both method can occur short delay for sending mail when the function works. You can also send text message using '10digits'@vtext.com (for verizon, there're similar things for others).

2015년 8월 17일 월요일

[8th Week] Generating streams from multiple Arduinos&Sensors on RPi

Last week, I tried some works generating streams with data from sensors on Arduino. I used DHT11 for temperature and humidity, and MPU-6050 for acceleration and gyro. Based on these work, I added more sensors on Raspberry Pi with 2 more Arduinos. Here's the structure.



There're four Arduinos(Arduino 0, 1, 2, 3). Arduino 0 has DHT-22 and dust sensor for temperature, humidity, dust concentration. Arduino 1 has MPU-6050 for acceleration, gyro, and temperature. Arduino 2 has mini sound sensor for sound pressure. Arduino 3 has Tarts Gateway for Tarts wireless sensors.

Therefore, Raspberry can handle 8 sensor data at once. Sampling rates for sensor data are different each other. Raspberry can generate streams with this, and do similar work I did last week (generating alerts) with these streams.

Further works I have to do are:
 - Stabilizing sensor data. Sensors using analog output are giving raw data with noises, so it is not quite accurate.

 - Finding stable connection method of tarts sensors. Tarts sensors are not detected well at its gateway in some condition, but I don't know what is the optimized condition.

2015년 8월 10일 월요일

[7th Week] Stream Applications for Sensor Data

Last week, I made a code that reads data from 2 Arduino synchronously, and send them to other device with bluetooth.
I modified the code that could read asynchronous data with making separate condition for each sensor. Next step could be making streams with sensor data. Python package PStreams would help this work. It was provided from my mentor.

Here's python code running on Raspberry Pi.

#Sample Code For Reading Data From Arduino, Sending via Bluetooth
#Get several string lines from sensors every 1 sampling
if __name__ == '__main__':
    if __package__ is None:
        import sys
        from os import path
        sys.path.append( path.dirname( path.dirname( path.abspath(__file__) ) ) )

import sys
import serial # From Arduino
from Stream import Stream # From PStreams
# asynch_element_func operates asynchronously
# on messages that appear in any of its input
# streams in the order in which they arrive.
from Asynch import asynch_element_func
from example_window_single_in_single_out_stateful import subtract_mean
from example_window_single_in_single_out_stateful import exceeds_k_sigma
from PrintingFunctions import print_stream, print_list_of_streams

# Two Arduinos connected to Raspberry Pi
# Arduino 0 has temperature and humidity
port0 = "/dev/ttyACM0" #DHT11(temperature,humidity)
# Arduini 1 has acceleration, gyro, and temperature
port1 = "/dev/ttyACM1" #MPU6050(acc(x,y,z),gyro(x,y,z),temperature)
portout = "/dev/ttyAMA0" #For Bluetooth Output

serialFromArduino0 = serial.Serial(port0, 115200)
serialFromArduino0.flushInput() #DHT11

serialFromArduino1 = serial.Serial(port1, 115200)
serialFromArduino1.flushInput() #MPU6050

serialToMATLAB = serial.Serial(portout, 9600)
serialToMATLAB.flushInput()
serialToMATLAB.flushOutput() #Bluetooth


def getSensorData0(temp1, temp2): #DHT11
    print('*DHT11*')
    input1 = serialFromArduino0.readline()
    input2 = serialFromArduino0.readline()
    r_tem = input1.split()
    r_hum = input2.split()

    if(input1.find('temperature') != -1 and input2.find('humidity') != -1
       and len(r_tem) == 2 and len(r_hum) == 2):

        tem = r_tem[1]
        hum = r_hum[1]
        return(tem, hum)

    else:
        return(temp1, temp2)

def getSensorData1(temp1, temp2, temp3, temp4, temp5, temp6, temp7): #MPU6050
    r_accel = serialFromArduino1.readline()
    r_temp = serialFromArduino1.readline()
    r_gyro = serialFromArduino1.readline()
    accel = r_accel.split()
    temp = r_temp.split()
    gyro = r_gyro.split()

    if(r_accel.find('accel') != -1 and r_temp.find('temperature') != -1 and r_gyro.find('gyro') != -1 and len(accel) == 5 and len(temp) == 4 and len(gyro) ==5 ):

        acc_x, acc_y, acc_z = accel[2:5]
        temp = temp[1]
        gyro_x, gyro_y, gyro_z = gyro[2:5]

        return(acc_x,acc_y,acc_z,temp,gyro_x,gyro_y,gyro_z)

    else:
        return(temp1,temp2,temp3,temp4,temp5,temp6,temp7)

    
def condition(state):
    """ Condition on temperature and humidity
    """
    temperature, humidity = state
    return ((temperature > 24 and humidity > 45) or
            (temperature > 25 and humidity > 40))


def update_state_and_output_condition(
        value, stream_number, state):
    """ Function that updates the state when a new
    value appears on the stream specified by
    stream_number. The function then returns the
    condition on the new state.

    """
    # update the state
    state[stream_number] = value
    return (condition(state), state)


def main():
    print('starting...')

    temperature_stream = Stream('temperature')
    humidity_stream = Stream('humidity')
    acc_x_stream = Stream('acceleration_x')
    acc_y_stream = Stream('acceleration_y')
    acc_z_stream = Stream('acceleration_z')

    normed_x_stream = subtract_mean(acc_x_stream, window_size=100)
    normed_y_stream = subtract_mean(acc_y_stream, window_size=100)
    normed_z_stream = subtract_mean(acc_z_stream, window_size=100)

    alerts_x = exceeds_k_sigma(acc_x_stream, window_size=100)
    alerts_y = exceeds_k_sigma(acc_y_stream, window_size=100)
    alerts_z = exceeds_k_sigma(acc_z_stream, window_size=100)

    discomfort_stream = asynch_element_func(
        f=update_state_and_output_condition,
        inputs = [temperature_stream,humidity_stream],
        num_outputs=1,
        state=[0,0])

    normed_x_stream.set_name('accln_x_mean_removed')
    normed_y_stream.set_name('accln_y_mean_removed')
    normed_z_stream.set_name('accln_z_mean_removed')

    alerts_x.set_name('Alert_x')
    alerts_y.set_name('Alert_y')
    alerts_z.set_name('Alert_z')
    
    discomfort_stream.set_name('discomfort_stream')

    print_list_of_streams([
        temperature_stream, humidity_stream,
        acc_x_stream, acc_y_stream, acc_z_stream,
        normed_x_stream, normed_y_stream, normed_z_stream,
        alerts_x, alerts_y, alerts_z,
discomfort_stream])

    d1, d2 = '0','0'
    m1, m2, m3, m4, m5, m6, m7 = '0','0','0','0','0','0','0'

    # The main loop. Reading sensors from two Arduinos.
    while True:
        if serialFromArduino0.inWaiting() > 0  or serialFromArduino1.inWaiting() > 0:
            if serialFromArduino1.inWaiting() > 0:
                if (serialFromArduino1.readline().find('*') != -1):
                    acc_x,acc_y,acc_z,temp,gyro_x,gyro_y,gyro_z = getSensorData1(m1, m2, m3, m4, m5, m6, m7)
                    m1, m2, m3, m4, m5, m6, m7 = acc_x, acc_y, acc_z, temp, gyro_x, gyro_y, gyro_z
                    print 'sensor data 1',acc_x,acc_y,acc_z,temp,gyro_x,gyro_y,gyro_z
                    acc_x_stream.append(int(acc_x))
                    acc_y_stream.append(int(acc_y))
                    acc_z_stream.append(int(acc_z))
                    if alerts_x.stop > 0:
                        alertx = alerts_x.recent[:alerts_x.stop][alerts_x.stop-1]
                        alerty = alerts_y.recent[:alerts_y.stop][alerts_y.stop-1]
                        alertz = alerts_z.recent[:alerts_z.stop][alerts_z.stop-1]
                        serialToMATLAB.write('*\n' + acc_x + '\n' + acc_y + '\n' + acc_z + '\n' + str(alertx) + '\n' + str(alerty) + '\n' + str(alertz) + '\n')
                    else:
                        serialToMATLAB.write('*\n' + acc_x + '\n' + acc_y + '\n' + acc_z + '\n' + '0' + '\n' + '0' + '\n' + '0' + '\n')

            if serialFromArduino0.inWaiting() > 0:
                if serialFromArduino0.readline().find('*') != -1:
                    tem, hum = getSensorData0(d1, d2)
                    d1, d2 = tem, hum
                    print 'sensor data 0', tem, hum
                    temperature_stream.append(float(tem))
                    humidity_stream.append(float(hum))
                    temperature_stream.print_recent()
                    humidity_stream.print_recent()

if __name__ == '__main__':
    main()

This can generate streams for temperature, humidity, and acceleration (x,y,z). Also, I added some additional lines for stable running. Some error occurs when the program can't read the data string from Arduino properly, so some exception is added for that.


Additionally, after generating streams for data, it could generate alerts for unusual conditions.
For example, uncomfortable conditions can be set for temperature and humidity, and alert comes when the current data violates this.
For acceleration, it can gather some data for a while, and calculate some statistical things. When the sigma of current data exceeds the threshold, it generates alerts.
Here's sample of printed data. Upper one is about DHT11, and the other is 2 sample of MPU6050.

Also, we can apply it with bluetooth connection. I captured the acceleration stream and alert stream with MATLAB.
Upper one is Acceleration (x,y,z) and below graphs are alerts. We can see the alert generated when I shake the sensor.


2015년 7월 29일 수요일

[6th Week] Bluetooth on RPi & MATLAB Plotting


Here's simple Bluetooth module HC-06. It is generally used for Arduino, but I'm going to use it on RPi, and send data to my laptop.

General explanations are posted on this website(http://blog.miguelgrinberg.com/post/a-cheap-bluetooth-serial-port-for-your-raspberry-pi/page/0). I used some contents I need from this post.


After connecting module and RPi like this figure, we need a few setup on RPi.
Type this command on terminal. sudo nano /boot/cmdline.txt
Fix the contents like this => dwc_otg.lpm_enable=0 console=tty1 root=/dev/mmcblk0p2 rootfstype=ext4 elevator=deadline rootwait
Also Type this command on terminal. sudo nano /etc/inittab
Comment out the last line => #T0:23:respawn:/sbin/getty -L ttyAMA0 115200 vt100

Reboot the Raspberry Pi, then we're ready to use Bluetooth module as ttyAMA0 port. Then, I tested sending data from RPi to laptop. I used data from MPU6050 in this test.



Here's design. Sensor data flow can be described like this.
Sensor(MPU6050) -> Arduino -> Raspberry Pi -> Laptop

I fixed some line of code that I used on RPi before.

import sys
import serial

port1 = "/dev/ttyACM0"
portout = "/dev/ttyAMA0"

serialFromArduino1 = serial.Serial(port1, 115200)
serialFromArduino1.flushInput()
serialToMATLAB = serial.Serial(portout, 9600)
serialToMATLAB.flushInput()
serialToMATLAB.flushOutput

def getSensorData1():
    print('*MPU-6050*')
    r_accel = serialFromArduino1.readline()
    print(r_accel)
    r_temp = serialFromArduino1.readline()
    print(r_temp)
    r_gyro = serialFromArduino1.readline()
    print(r_gyro)

    accel = r_accel.split()
    temp = r_temp.split()
    gyro = r_gyro.split()
    acc_x, acc_y, acc_z = accel[2],accel[3],accel[4]
    temp = temp[1]
    gyro_x, gyro_y, gyro_z = gyro[2],gyro[3],gyro[4]

    return(acc_x,acc_y,acc_z,temp,gyro_x,gyro_y,gyro_z)

def main():
    print('starting...')

    while True:
        if(serialFromArduino1.inWaiting() > 0):
            if(serialFromArduino1.readline().find('*') != -1 and serialFromArduino1.readline().find('=')!= -1):
                acc_x,acc_y,acc_z,temp,gyro_x,gyro_y,gyro_z = getSensorData1()
                print('Raw Data: ')
                print(acc_x,acc_y,acc_z,temp,gyro_x,gyro_y,gyro_z)
                print('\n')
                serialToMATLAB.write('*\n')
                serialToMATLAB.write(acc_x + '\n')
                serialToMATLAB.write(acc_y + '\n')
                serialToMATLAB.write(acc_z + '\n')
                serialToMATLAB.write(temp+ '\n')
                serialToMATLAB.write(gyro_x + '\n')
                serialToMATLAB.write(gyro_y + '\n')
                serialToMATLAB.write(gyro_z + '\n')

if __name__ == '__main__':
    main()

I just added ttyAMA0 port, and used it for serial out. I received these data with MATLAB, and plotted each data. Here's MATLAB code below.(Just for testing)

clear all; clc; close all; s = Bluetooth('HC-06',1); fopen(s); time = 0; temp1 = 0; temp2 = 0; temp3 = 0; temp4 = 0; temp5 = 0; temp6 = 0; temp7 = 0; while(1) if(strtrim(fgets(s)) == '*') time = time+0.5; acc_x = str2double(strtrim(fgets(s))); acc_y = str2double(strtrim(fgets(s))); acc_z = str2double(strtrim(fgets(s))); temper = str2double(strtrim(fgets(s))); gyro_x = str2double(strtrim(fgets(s))); gyro_y = str2double(strtrim(fgets(s))); gyro_z = str2double(strtrim(fgets(s))); x=[time-0.5 time]; y1=[temp1 acc_x]; subplot(3,3,1); line(x,y1); y2=[temp2 acc_y]; subplot(3,3,2); line(x,y2); y3=[temp3 acc_z]; subplot(3,3,3); line(x,y3); y4=[temp4 temper]; subplot(3,3,4); line(x,y4); y5=[temp5 gyro_x]; subplot(3,3,5); line(x,y5); y6=[temp6 gyro_y]; subplot(3,3,6); line(x,y6); y7=[temp7 gyro_z]; subplot(3,3,7); line(x,y7); temp1 = acc_x; temp2 = acc_y; temp3 = acc_z; temp4 = temper; temp5 = gyro_x; temp6 = gyro_y; temp7 = gyro_z; hold on; drawnow; end end fclose(s);

I used same code on Arduino for MPU6050. Just changed sensing delay for convenience.
Result looks like this. It is graph of Accel(x,y,z), Temperature, Gyro(x,y,z).
This shows the result when I shake the sensor. Data includes 20 samples per second, so I arbitrary set the data capturing interval as 0.05 second in MATLAB. Maybe I can use some functions related to date or time in python to make more accurate real-time plotting.

2015년 7월 27일 월요일

[6th Week] 2 Sensor Testing


Here's current design of Sensors, Arduinos, and Raspberry Pi.

I've done some works with 2 individual sensors last week. Also, I'm going to capture 2 data from DHT11 and MPU6050 in one code. I used same codes that I used before for Arduino. Here's python code for RPi below.

import sys
import serial

port0 = "/dev/ttyACM0"

port1 = "/dev/ttyACM1"

serialFromArduino0 = serial.Serial(port0, 9600)

serialFromArduino0.flushInput()
serialFromArduino1 = serial.Serial(port1, 115200)
serialFromArduino1.flushInput()


def getSensorData0():

    print('*DHT11*')
    input1 = serialFromArduino0.readline()
    print(input1)
    tem = input1.split()[1]
    input2 = serialFromArduino0.readline()
    print(input2)
    hum = input2.split()[1]
    return (float(tem), float(hum))

def getSensorData1():

    print('*MPU-6050*')
    r_accel = serialFromArduino1.readline()
    print(r_accel)
    r_temp = serialFromArduino1.readline()
    print(r_temp)
    r_gyro = serialFromArduino1.readline()
    print(r_gyro)

    accel = r_accel.split()

    temp = r_temp.split()
    gyro = r_gyro.split()
    acc_x, acc_y, acc_z = accel[2],accel[3],accel[4]
    temp = temp[1]
    gyro_x, gyro_y, gyro_z = gyro[2],gyro[3],gyro[4]

    return(float(acc_x),float(acc_y),float(acc_z),float(temp),float(gyro_x),float(gyro_y),float(gyro_z))


def main():

    print('starting...')

    while True:

        if(serialFromArduino0.inWaiting() > 0 and serialFromArduino1.inWaiting() > 0):
            if(serialFromArduino0.readline().find('*') != -1 and serialFromArduino1.readline().find('*') != -1 and serialFromArduino1.readline().find('=')!= -1):
                tem, hum = getSensorData0()
                acc_x,acc_y,acc_z,temp,gyro_x,gyro_y,gyro_z = getSensorData1()
                print('Raw Data: ')
                print(tem,hum,acc_x,acc_y,acc_z,temp,gyro_x,gyro_y,gyro_z)
                print('\n')

if __name__ == '__main__':

    main()

Sensing delay could be set on codes for Arduino, and delays for 2 sensors are good to be same. With modifying a few lines from this code, we can send data to ThingSpeak as we did with Temperature sensor.


This opensource API has a limitation. It only can capture data in every 15sec. However, I could just check the data flows properly.


Result screen on terminal looks like this.




2015년 7월 23일 목요일

[5th Week] DHT11 Temperature & Humidity Sensor

One of sensors I selected for my testing is temperature sensor. DHT11 includes temperature sensor, and humidity sensor.
Here's DHT11 board. Originally, it is just blue unit on the top with 4 pins, and it should be connected with resistor. However, this consists resistor in its board, and has only 3 pins except useless pin.
I connected it to Arduino board, and pin connection is like this.
(Arduino <-> DHT11)
5V <-> + (VCC)
GND <-> - (GND)
DIGITAL 2 <-> DATA

From now on, I can check data from sensor on Arduino with this code below. We can use DHT11 library for Arduino. It could be easily found in the website.

#include <DHT11.h>
int pin=2;
DHT11 dht11(pin); 
void setup()
{
   Serial.begin(9600);
  while (!Serial) {
      ; // wait for serial port to connect. Needed for Leonardo only
    }
}

void loop()
{
  int err;
  float temp, humi;
  if((err=dht11.read(humi, temp))==0)
  {
    Serial.println("*DHT11*");
    Serial.print("temperature: ");
    Serial.println(temp);
    Serial.print("humidity: ");
    Serial.println(humi);
  }
  else
  {
    Serial.println();
    Serial.print("Error No :");
    Serial.print(err);
    Serial.println();    
  }
  delay(1000); //delay for reread
}

With this, data is sent to RPi through serial connection. For capturing data on RPi, this python code can work.

import sys
import serial

port = "/dev/ttyACM0"

serialFromArduino = serial.Serial(port, 9600)
serialFromArduino.flushInput()

def getSensorData():

    print('*DHT11*')
    input1 = serialFromArduino.readline()
    print(input1)
    tem = input1.split()[1]
    input2 = serialFromArduino.readline()
    print(input2)
    hum = input2.split()[1]
    return (float(tem), float(hum))

def main():

    print('starting...')

    while True:

        if(serialFromArduino.inWaiting() > 0):
            if(serialFromArduino.readline().find('*') != -1):
                tem, hum = getSensorData()
            
if __name__ == '__main__':
    main()

Result looks like this.

[5th Week] MPU-6050 Accelerometer & Gyro Sensor (+Temperature)

One of sensors I selected for my testing is accelerometer. MPU-6050 includes accelerometer, gyro sensor, and temperature sensor. It looks quite simple to be tested on my Arduino and RPi.
Here's MPU-6050. It has board, and headers. For it's proper operation, it should be soldered.
After soldering, I connected it to Arduino board. Pin connection is like this below.
(Arduino <-> MPU-6050)
3.3V <-> VCC
GND <-> GND
Analog IN A4 <-> SDA
Analog IN A5 <-> SCL

From now on, I can check data from sensor on Arduino with this code below. I modified some lines from original code.

// MPU-6050 Accelerometer + Gyro
// -----------------------------
//
// By arduino.cc user "Krodal".
//
// June 2012
//      first version
// July 2013 
//      The 'int' in the union for the x,y,z
//      changed into int16_t to be compatible
//      with Arduino Due.
//
// Open Source / Public Domain
//
// Using Arduino 1.0.1
// It will not work with an older version, 
// since Wire.endTransmission() uses a parameter 
// to hold or release the I2C bus.
//
// Documentation:
// - The InvenSense documents:
//   - "MPU-6000 and MPU-6050 Product Specification",
//     PS-MPU-6000A.pdf
//   - "MPU-6000 and MPU-6050 Register Map and Descriptions",
//     RM-MPU-6000A.pdf or RS-MPU-6000A.pdf
//   - "MPU-6000/MPU-6050 9-Axis Evaluation Board User Guide"
//     AN-MPU-6000EVB.pdf
// 
// The accuracy is 16-bits.
//
// Temperature sensor from -40 to +85 degrees Celsius
//   340 per degrees, -512 at 35 degrees.
//
// At power-up, all registers are zero, except these two:
//      Register 0x6B (PWR_MGMT_2) = 0x40  (I read zero).
//      Register 0x75 (WHO_AM_I)   = 0x68.
// 

#include <Wire.h>

// The name of the sensor is "MPU-6050".
// For program code, I omit the '-', 
// therefor I use the name "MPU6050....".

// Register names according to the datasheet.
// According to the InvenSense document 
// "MPU-6000 and MPU-6050 Register Map 
// and Descriptions Revision 3.2", there are no registers
// at 0x02 ... 0x18, but according other information 
// the registers in that unknown area are for gain 
// and offsets.
// 
#define MPU6050_AUX_VDDIO          0x01   // R/W
#define MPU6050_SMPLRT_DIV         0x19   // R/W
#define MPU6050_CONFIG             0x1A   // R/W
#define MPU6050_GYRO_CONFIG        0x1B   // R/W
#define MPU6050_ACCEL_CONFIG       0x1C   // R/W
#define MPU6050_FF_THR             0x1D   // R/W
#define MPU6050_FF_DUR             0x1E   // R/W
#define MPU6050_MOT_THR            0x1F   // R/W
#define MPU6050_MOT_DUR            0x20   // R/W
#define MPU6050_ZRMOT_THR          0x21   // R/W
#define MPU6050_ZRMOT_DUR          0x22   // R/W
#define MPU6050_FIFO_EN            0x23   // R/W
#define MPU6050_I2C_MST_CTRL       0x24   // R/W
#define MPU6050_I2C_SLV0_ADDR      0x25   // R/W
#define MPU6050_I2C_SLV0_REG       0x26   // R/W
#define MPU6050_I2C_SLV0_CTRL      0x27   // R/W
#define MPU6050_I2C_SLV1_ADDR      0x28   // R/W
#define MPU6050_I2C_SLV1_REG       0x29   // R/W
#define MPU6050_I2C_SLV1_CTRL      0x2A   // R/W
#define MPU6050_I2C_SLV2_ADDR      0x2B   // R/W
#define MPU6050_I2C_SLV2_REG       0x2C   // R/W
#define MPU6050_I2C_SLV2_CTRL      0x2D   // R/W
#define MPU6050_I2C_SLV3_ADDR      0x2E   // R/W
#define MPU6050_I2C_SLV3_REG       0x2F   // R/W
#define MPU6050_I2C_SLV3_CTRL      0x30   // R/W
#define MPU6050_I2C_SLV4_ADDR      0x31   // R/W
#define MPU6050_I2C_SLV4_REG       0x32   // R/W
#define MPU6050_I2C_SLV4_DO        0x33   // R/W
#define MPU6050_I2C_SLV4_CTRL      0x34   // R/W
#define MPU6050_I2C_SLV4_DI        0x35   // R  
#define MPU6050_I2C_MST_STATUS     0x36   // R
#define MPU6050_INT_PIN_CFG        0x37   // R/W
#define MPU6050_INT_ENABLE         0x38   // R/W
#define MPU6050_INT_STATUS         0x3A   // R  
#define MPU6050_ACCEL_XOUT_H       0x3B   // R  
#define MPU6050_ACCEL_XOUT_L       0x3C   // R  
#define MPU6050_ACCEL_YOUT_H       0x3D   // R  
#define MPU6050_ACCEL_YOUT_L       0x3E   // R  
#define MPU6050_ACCEL_ZOUT_H       0x3F   // R  
#define MPU6050_ACCEL_ZOUT_L       0x40   // R  
#define MPU6050_TEMP_OUT_H         0x41   // R  
#define MPU6050_TEMP_OUT_L         0x42   // R  
#define MPU6050_GYRO_XOUT_H        0x43   // R  
#define MPU6050_GYRO_XOUT_L        0x44   // R  
#define MPU6050_GYRO_YOUT_H        0x45   // R  
#define MPU6050_GYRO_YOUT_L        0x46   // R  
#define MPU6050_GYRO_ZOUT_H        0x47   // R  
#define MPU6050_GYRO_ZOUT_L        0x48   // R  
#define MPU6050_EXT_SENS_DATA_00   0x49   // R  
#define MPU6050_EXT_SENS_DATA_01   0x4A   // R  
#define MPU6050_EXT_SENS_DATA_02   0x4B   // R  
#define MPU6050_EXT_SENS_DATA_03   0x4C   // R  
#define MPU6050_EXT_SENS_DATA_04   0x4D   // R  
#define MPU6050_EXT_SENS_DATA_05   0x4E   // R  
#define MPU6050_EXT_SENS_DATA_06   0x4F   // R  
#define MPU6050_EXT_SENS_DATA_07   0x50   // R  
#define MPU6050_EXT_SENS_DATA_08   0x51   // R  
#define MPU6050_EXT_SENS_DATA_09   0x52   // R  
#define MPU6050_EXT_SENS_DATA_10   0x53   // R  
#define MPU6050_EXT_SENS_DATA_11   0x54   // R  
#define MPU6050_EXT_SENS_DATA_12   0x55   // R  
#define MPU6050_EXT_SENS_DATA_13   0x56   // R  
#define MPU6050_EXT_SENS_DATA_14   0x57   // R  
#define MPU6050_EXT_SENS_DATA_15   0x58   // R  
#define MPU6050_EXT_SENS_DATA_16   0x59   // R  
#define MPU6050_EXT_SENS_DATA_17   0x5A   // R  
#define MPU6050_EXT_SENS_DATA_18   0x5B   // R  
#define MPU6050_EXT_SENS_DATA_19   0x5C   // R  
#define MPU6050_EXT_SENS_DATA_20   0x5D   // R  
#define MPU6050_EXT_SENS_DATA_21   0x5E   // R  
#define MPU6050_EXT_SENS_DATA_22   0x5F   // R  
#define MPU6050_EXT_SENS_DATA_23   0x60   // R  
#define MPU6050_MOT_DETECT_STATUS  0x61   // R  
#define MPU6050_I2C_SLV0_DO        0x63   // R/W
#define MPU6050_I2C_SLV1_DO        0x64   // R/W
#define MPU6050_I2C_SLV2_DO        0x65   // R/W
#define MPU6050_I2C_SLV3_DO        0x66   // R/W
#define MPU6050_I2C_MST_DELAY_CTRL 0x67   // R/W
#define MPU6050_SIGNAL_PATH_RESET  0x68   // R/W
#define MPU6050_MOT_DETECT_CTRL    0x69   // R/W
#define MPU6050_USER_CTRL          0x6A   // R/W
#define MPU6050_PWR_MGMT_1         0x6B   // R/W
#define MPU6050_PWR_MGMT_2         0x6C   // R/W
#define MPU6050_FIFO_COUNTH        0x72   // R/W
#define MPU6050_FIFO_COUNTL        0x73   // R/W
#define MPU6050_FIFO_R_W           0x74   // R/W
#define MPU6050_WHO_AM_I           0x75   // R

// Defines for the bits, to be able to change 
// between bit number and binary definition.
// By using the bit number, programming the sensor 
// is like programming the AVR microcontroller.
// But instead of using "(1<<X)", or "_BV(X)", 
// the Arduino "bit(X)" is used.
#define MPU6050_D0 0
#define MPU6050_D1 1
#define MPU6050_D2 2
#define MPU6050_D3 3
#define MPU6050_D4 4
#define MPU6050_D5 5
#define MPU6050_D6 6
#define MPU6050_D7 7

// AUX_VDDIO Register
#define MPU6050_AUX_VDDIO MPU6050_D7  // I2C high: 1=VDD, 0=VLOGIC

// CONFIG Register
// DLPF is Digital Low Pass Filter for both gyro and accelerometers.
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_DLPF_CFG0     MPU6050_D0
#define MPU6050_DLPF_CFG1     MPU6050_D1
#define MPU6050_DLPF_CFG2     MPU6050_D2
#define MPU6050_EXT_SYNC_SET0 MPU6050_D3
#define MPU6050_EXT_SYNC_SET1 MPU6050_D4
#define MPU6050_EXT_SYNC_SET2 MPU6050_D5

// Combined definitions for the EXT_SYNC_SET values
#define MPU6050_EXT_SYNC_SET_0 (0)
#define MPU6050_EXT_SYNC_SET_1 (bit(MPU6050_EXT_SYNC_SET0))
#define MPU6050_EXT_SYNC_SET_2 (bit(MPU6050_EXT_SYNC_SET1))
#define MPU6050_EXT_SYNC_SET_3 (bit(MPU6050_EXT_SYNC_SET1)|bit(MPU6050_EXT_SYNC_SET0))
#define MPU6050_EXT_SYNC_SET_4 (bit(MPU6050_EXT_SYNC_SET2))
#define MPU6050_EXT_SYNC_SET_5 (bit(MPU6050_EXT_SYNC_SET2)|bit(MPU6050_EXT_SYNC_SET0))
#define MPU6050_EXT_SYNC_SET_6 (bit(MPU6050_EXT_SYNC_SET2)|bit(MPU6050_EXT_SYNC_SET1))
#define MPU6050_EXT_SYNC_SET_7 (bit(MPU6050_EXT_SYNC_SET2)|bit(MPU6050_EXT_SYNC_SET1)|bit(MPU6050_EXT_SYNC_SET0))

// Alternative names for the combined definitions.
#define MPU6050_EXT_SYNC_DISABLED     MPU6050_EXT_SYNC_SET_0
#define MPU6050_EXT_SYNC_TEMP_OUT_L   MPU6050_EXT_SYNC_SET_1
#define MPU6050_EXT_SYNC_GYRO_XOUT_L  MPU6050_EXT_SYNC_SET_2
#define MPU6050_EXT_SYNC_GYRO_YOUT_L  MPU6050_EXT_SYNC_SET_3
#define MPU6050_EXT_SYNC_GYRO_ZOUT_L  MPU6050_EXT_SYNC_SET_4
#define MPU6050_EXT_SYNC_ACCEL_XOUT_L MPU6050_EXT_SYNC_SET_5
#define MPU6050_EXT_SYNC_ACCEL_YOUT_L MPU6050_EXT_SYNC_SET_6
#define MPU6050_EXT_SYNC_ACCEL_ZOUT_L MPU6050_EXT_SYNC_SET_7

// Combined definitions for the DLPF_CFG values
#define MPU6050_DLPF_CFG_0 (0)
#define MPU6050_DLPF_CFG_1 (bit(MPU6050_DLPF_CFG0))
#define MPU6050_DLPF_CFG_2 (bit(MPU6050_DLPF_CFG1))
#define MPU6050_DLPF_CFG_3 (bit(MPU6050_DLPF_CFG1)|bit(MPU6050_DLPF_CFG0))
#define MPU6050_DLPF_CFG_4 (bit(MPU6050_DLPF_CFG2))
#define MPU6050_DLPF_CFG_5 (bit(MPU6050_DLPF_CFG2)|bit(MPU6050_DLPF_CFG0))
#define MPU6050_DLPF_CFG_6 (bit(MPU6050_DLPF_CFG2)|bit(MPU6050_DLPF_CFG1))
#define MPU6050_DLPF_CFG_7 (bit(MPU6050_DLPF_CFG2)|bit(MPU6050_DLPF_CFG1)|bit(MPU6050_DLPF_CFG0))

// Alternative names for the combined definitions
// This name uses the bandwidth (Hz) for the accelometer,
// for the gyro the bandwidth is almost the same.
#define MPU6050_DLPF_260HZ    MPU6050_DLPF_CFG_0
#define MPU6050_DLPF_184HZ    MPU6050_DLPF_CFG_1
#define MPU6050_DLPF_94HZ     MPU6050_DLPF_CFG_2
#define MPU6050_DLPF_44HZ     MPU6050_DLPF_CFG_3
#define MPU6050_DLPF_21HZ     MPU6050_DLPF_CFG_4
#define MPU6050_DLPF_10HZ     MPU6050_DLPF_CFG_5
#define MPU6050_DLPF_5HZ      MPU6050_DLPF_CFG_6
#define MPU6050_DLPF_RESERVED MPU6050_DLPF_CFG_7

// GYRO_CONFIG Register
// The XG_ST, YG_ST, ZG_ST are bits for selftest.
// The FS_SEL sets the range for the gyro.
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_FS_SEL0 MPU6050_D3
#define MPU6050_FS_SEL1 MPU6050_D4
#define MPU6050_ZG_ST   MPU6050_D5
#define MPU6050_YG_ST   MPU6050_D6
#define MPU6050_XG_ST   MPU6050_D7

// Combined definitions for the FS_SEL values
#define MPU6050_FS_SEL_0 (0)
#define MPU6050_FS_SEL_1 (bit(MPU6050_FS_SEL0))
#define MPU6050_FS_SEL_2 (bit(MPU6050_FS_SEL1))
#define MPU6050_FS_SEL_3 (bit(MPU6050_FS_SEL1)|bit(MPU6050_FS_SEL0))

// Alternative names for the combined definitions
// The name uses the range in degrees per second.
#define MPU6050_FS_SEL_250  MPU6050_FS_SEL_0
#define MPU6050_FS_SEL_500  MPU6050_FS_SEL_1
#define MPU6050_FS_SEL_1000 MPU6050_FS_SEL_2
#define MPU6050_FS_SEL_2000 MPU6050_FS_SEL_3

// ACCEL_CONFIG Register
// The XA_ST, YA_ST, ZA_ST are bits for selftest.
// The AFS_SEL sets the range for the accelerometer.
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_ACCEL_HPF0 MPU6050_D0
#define MPU6050_ACCEL_HPF1 MPU6050_D1
#define MPU6050_ACCEL_HPF2 MPU6050_D2
#define MPU6050_AFS_SEL0   MPU6050_D3
#define MPU6050_AFS_SEL1   MPU6050_D4
#define MPU6050_ZA_ST      MPU6050_D5
#define MPU6050_YA_ST      MPU6050_D6
#define MPU6050_XA_ST      MPU6050_D7

// Combined definitions for the ACCEL_HPF values
#define MPU6050_ACCEL_HPF_0 (0)
#define MPU6050_ACCEL_HPF_1 (bit(MPU6050_ACCEL_HPF0))
#define MPU6050_ACCEL_HPF_2 (bit(MPU6050_ACCEL_HPF1))
#define MPU6050_ACCEL_HPF_3 (bit(MPU6050_ACCEL_HPF1)|bit(MPU6050_ACCEL_HPF0))
#define MPU6050_ACCEL_HPF_4 (bit(MPU6050_ACCEL_HPF2))
#define MPU6050_ACCEL_HPF_7 (bit(MPU6050_ACCEL_HPF2)|bit(MPU6050_ACCEL_HPF1)|bit(MPU6050_ACCEL_HPF0))

// Alternative names for the combined definitions
// The name uses the Cut-off frequency.
#define MPU6050_ACCEL_HPF_RESET  MPU6050_ACCEL_HPF_0
#define MPU6050_ACCEL_HPF_5HZ    MPU6050_ACCEL_HPF_1
#define MPU6050_ACCEL_HPF_2_5HZ  MPU6050_ACCEL_HPF_2
#define MPU6050_ACCEL_HPF_1_25HZ MPU6050_ACCEL_HPF_3
#define MPU6050_ACCEL_HPF_0_63HZ MPU6050_ACCEL_HPF_4
#define MPU6050_ACCEL_HPF_HOLD   MPU6050_ACCEL_HPF_7

// Combined definitions for the AFS_SEL values
#define MPU6050_AFS_SEL_0 (0)
#define MPU6050_AFS_SEL_1 (bit(MPU6050_AFS_SEL0))
#define MPU6050_AFS_SEL_2 (bit(MPU6050_AFS_SEL1))
#define MPU6050_AFS_SEL_3 (bit(MPU6050_AFS_SEL1)|bit(MPU6050_AFS_SEL0))

// Alternative names for the combined definitions
// The name uses the full scale range for the accelerometer.
#define MPU6050_AFS_SEL_2G  MPU6050_AFS_SEL_0
#define MPU6050_AFS_SEL_4G  MPU6050_AFS_SEL_1
#define MPU6050_AFS_SEL_8G  MPU6050_AFS_SEL_2
#define MPU6050_AFS_SEL_16G MPU6050_AFS_SEL_3

// FIFO_EN Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_SLV0_FIFO_EN  MPU6050_D0
#define MPU6050_SLV1_FIFO_EN  MPU6050_D1
#define MPU6050_SLV2_FIFO_EN  MPU6050_D2
#define MPU6050_ACCEL_FIFO_EN MPU6050_D3
#define MPU6050_ZG_FIFO_EN    MPU6050_D4
#define MPU6050_YG_FIFO_EN    MPU6050_D5
#define MPU6050_XG_FIFO_EN    MPU6050_D6
#define MPU6050_TEMP_FIFO_EN  MPU6050_D7

// I2C_MST_CTRL Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_MST_CLK0  MPU6050_D0
#define MPU6050_I2C_MST_CLK1  MPU6050_D1
#define MPU6050_I2C_MST_CLK2  MPU6050_D2
#define MPU6050_I2C_MST_CLK3  MPU6050_D3
#define MPU6050_I2C_MST_P_NSR MPU6050_D4
#define MPU6050_SLV_3_FIFO_EN MPU6050_D5
#define MPU6050_WAIT_FOR_ES   MPU6050_D6
#define MPU6050_MULT_MST_EN   MPU6050_D7

// Combined definitions for the I2C_MST_CLK
#define MPU6050_I2C_MST_CLK_0 (0)
#define MPU6050_I2C_MST_CLK_1  (bit(MPU6050_I2C_MST_CLK0))
#define MPU6050_I2C_MST_CLK_2  (bit(MPU6050_I2C_MST_CLK1))
#define MPU6050_I2C_MST_CLK_3  (bit(MPU6050_I2C_MST_CLK1)|bit(MPU6050_I2C_MST_CLK0))
#define MPU6050_I2C_MST_CLK_4  (bit(MPU6050_I2C_MST_CLK2))
#define MPU6050_I2C_MST_CLK_5  (bit(MPU6050_I2C_MST_CLK2)|bit(MPU6050_I2C_MST_CLK0))
#define MPU6050_I2C_MST_CLK_6  (bit(MPU6050_I2C_MST_CLK2)|bit(MPU6050_I2C_MST_CLK1))
#define MPU6050_I2C_MST_CLK_7  (bit(MPU6050_I2C_MST_CLK2)|bit(MPU6050_I2C_MST_CLK1)|bit(MPU6050_I2C_MST_CLK0))
#define MPU6050_I2C_MST_CLK_8  (bit(MPU6050_I2C_MST_CLK3))
#define MPU6050_I2C_MST_CLK_9  (bit(MPU6050_I2C_MST_CLK3)|bit(MPU6050_I2C_MST_CLK0))
#define MPU6050_I2C_MST_CLK_10 (bit(MPU6050_I2C_MST_CLK3)|bit(MPU6050_I2C_MST_CLK1))
#define MPU6050_I2C_MST_CLK_11 (bit(MPU6050_I2C_MST_CLK3)|bit(MPU6050_I2C_MST_CLK1)|bit(MPU6050_I2C_MST_CLK0))
#define MPU6050_I2C_MST_CLK_12 (bit(MPU6050_I2C_MST_CLK3)|bit(MPU6050_I2C_MST_CLK2))
#define MPU6050_I2C_MST_CLK_13 (bit(MPU6050_I2C_MST_CLK3)|bit(MPU6050_I2C_MST_CLK2)|bit(MPU6050_I2C_MST_CLK0))
#define MPU6050_I2C_MST_CLK_14 (bit(MPU6050_I2C_MST_CLK3)|bit(MPU6050_I2C_MST_CLK2)|bit(MPU6050_I2C_MST_CLK1))
#define MPU6050_I2C_MST_CLK_15 (bit(MPU6050_I2C_MST_CLK3)|bit(MPU6050_I2C_MST_CLK2)|bit(MPU6050_I2C_MST_CLK1)|bit(MPU6050_I2C_MST_CLK0))

// Alternative names for the combined definitions
// The names uses I2C Master Clock Speed in kHz.
#define MPU6050_I2C_MST_CLK_348KHZ MPU6050_I2C_MST_CLK_0
#define MPU6050_I2C_MST_CLK_333KHZ MPU6050_I2C_MST_CLK_1
#define MPU6050_I2C_MST_CLK_320KHZ MPU6050_I2C_MST_CLK_2
#define MPU6050_I2C_MST_CLK_308KHZ MPU6050_I2C_MST_CLK_3
#define MPU6050_I2C_MST_CLK_296KHZ MPU6050_I2C_MST_CLK_4
#define MPU6050_I2C_MST_CLK_286KHZ MPU6050_I2C_MST_CLK_5
#define MPU6050_I2C_MST_CLK_276KHZ MPU6050_I2C_MST_CLK_6
#define MPU6050_I2C_MST_CLK_267KHZ MPU6050_I2C_MST_CLK_7
#define MPU6050_I2C_MST_CLK_258KHZ MPU6050_I2C_MST_CLK_8
#define MPU6050_I2C_MST_CLK_500KHZ MPU6050_I2C_MST_CLK_9
#define MPU6050_I2C_MST_CLK_471KHZ MPU6050_I2C_MST_CLK_10
#define MPU6050_I2C_MST_CLK_444KHZ MPU6050_I2C_MST_CLK_11
#define MPU6050_I2C_MST_CLK_421KHZ MPU6050_I2C_MST_CLK_12
#define MPU6050_I2C_MST_CLK_400KHZ MPU6050_I2C_MST_CLK_13
#define MPU6050_I2C_MST_CLK_381KHZ MPU6050_I2C_MST_CLK_14
#define MPU6050_I2C_MST_CLK_364KHZ MPU6050_I2C_MST_CLK_15

// I2C_SLV0_ADDR Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV0_RW MPU6050_D7

// I2C_SLV0_CTRL Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV0_LEN0    MPU6050_D0
#define MPU6050_I2C_SLV0_LEN1    MPU6050_D1
#define MPU6050_I2C_SLV0_LEN2    MPU6050_D2
#define MPU6050_I2C_SLV0_LEN3    MPU6050_D3
#define MPU6050_I2C_SLV0_GRP     MPU6050_D4
#define MPU6050_I2C_SLV0_REG_DIS MPU6050_D5
#define MPU6050_I2C_SLV0_BYTE_SW MPU6050_D6
#define MPU6050_I2C_SLV0_EN      MPU6050_D7

// A mask for the length
#define MPU6050_I2C_SLV0_LEN_MASK 0x0F

// I2C_SLV1_ADDR Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV1_RW MPU6050_D7

// I2C_SLV1_CTRL Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV1_LEN0    MPU6050_D0
#define MPU6050_I2C_SLV1_LEN1    MPU6050_D1
#define MPU6050_I2C_SLV1_LEN2    MPU6050_D2
#define MPU6050_I2C_SLV1_LEN3    MPU6050_D3
#define MPU6050_I2C_SLV1_GRP     MPU6050_D4
#define MPU6050_I2C_SLV1_REG_DIS MPU6050_D5
#define MPU6050_I2C_SLV1_BYTE_SW MPU6050_D6
#define MPU6050_I2C_SLV1_EN      MPU6050_D7

// A mask for the length
#define MPU6050_I2C_SLV1_LEN_MASK 0x0F

// I2C_SLV2_ADDR Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV2_RW MPU6050_D7

// I2C_SLV2_CTRL Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV2_LEN0    MPU6050_D0
#define MPU6050_I2C_SLV2_LEN1    MPU6050_D1
#define MPU6050_I2C_SLV2_LEN2    MPU6050_D2
#define MPU6050_I2C_SLV2_LEN3    MPU6050_D3
#define MPU6050_I2C_SLV2_GRP     MPU6050_D4
#define MPU6050_I2C_SLV2_REG_DIS MPU6050_D5
#define MPU6050_I2C_SLV2_BYTE_SW MPU6050_D6
#define MPU6050_I2C_SLV2_EN      MPU6050_D7

// A mask for the length
#define MPU6050_I2C_SLV2_LEN_MASK 0x0F

// I2C_SLV3_ADDR Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV3_RW MPU6050_D7

// I2C_SLV3_CTRL Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV3_LEN0    MPU6050_D0
#define MPU6050_I2C_SLV3_LEN1    MPU6050_D1
#define MPU6050_I2C_SLV3_LEN2    MPU6050_D2
#define MPU6050_I2C_SLV3_LEN3    MPU6050_D3
#define MPU6050_I2C_SLV3_GRP     MPU6050_D4
#define MPU6050_I2C_SLV3_REG_DIS MPU6050_D5
#define MPU6050_I2C_SLV3_BYTE_SW MPU6050_D6
#define MPU6050_I2C_SLV3_EN      MPU6050_D7

// A mask for the length
#define MPU6050_I2C_SLV3_LEN_MASK 0x0F

// I2C_SLV4_ADDR Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV4_RW MPU6050_D7

// I2C_SLV4_CTRL Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_MST_DLY0     MPU6050_D0
#define MPU6050_I2C_MST_DLY1     MPU6050_D1
#define MPU6050_I2C_MST_DLY2     MPU6050_D2
#define MPU6050_I2C_MST_DLY3     MPU6050_D3
#define MPU6050_I2C_MST_DLY4     MPU6050_D4
#define MPU6050_I2C_SLV4_REG_DIS MPU6050_D5
#define MPU6050_I2C_SLV4_INT_EN  MPU6050_D6
#define MPU6050_I2C_SLV4_EN      MPU6050_D7

// A mask for the delay
#define MPU6050_I2C_MST_DLY_MASK 0x1F

// I2C_MST_STATUS Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV0_NACK MPU6050_D0
#define MPU6050_I2C_SLV1_NACK MPU6050_D1
#define MPU6050_I2C_SLV2_NACK MPU6050_D2
#define MPU6050_I2C_SLV3_NACK MPU6050_D3
#define MPU6050_I2C_SLV4_NACK MPU6050_D4
#define MPU6050_I2C_LOST_ARB  MPU6050_D5
#define MPU6050_I2C_SLV4_DONE MPU6050_D6
#define MPU6050_PASS_THROUGH  MPU6050_D7

// I2C_PIN_CFG Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_CLKOUT_EN       MPU6050_D0
#define MPU6050_I2C_BYPASS_EN   MPU6050_D1
#define MPU6050_FSYNC_INT_EN    MPU6050_D2
#define MPU6050_FSYNC_INT_LEVEL MPU6050_D3
#define MPU6050_INT_RD_CLEAR    MPU6050_D4
#define MPU6050_LATCH_INT_EN    MPU6050_D5
#define MPU6050_INT_OPEN        MPU6050_D6
#define MPU6050_INT_LEVEL       MPU6050_D7

// INT_ENABLE Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_DATA_RDY_EN    MPU6050_D0
#define MPU6050_I2C_MST_INT_EN MPU6050_D3
#define MPU6050_FIFO_OFLOW_EN  MPU6050_D4
#define MPU6050_ZMOT_EN        MPU6050_D5
#define MPU6050_MOT_EN         MPU6050_D6
#define MPU6050_FF_EN          MPU6050_D7

// INT_STATUS Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_DATA_RDY_INT   MPU6050_D0
#define MPU6050_I2C_MST_INT    MPU6050_D3
#define MPU6050_FIFO_OFLOW_INT MPU6050_D4
#define MPU6050_ZMOT_INT       MPU6050_D5
#define MPU6050_MOT_INT        MPU6050_D6
#define MPU6050_FF_INT         MPU6050_D7

// MOT_DETECT_STATUS Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_MOT_ZRMOT MPU6050_D0
#define MPU6050_MOT_ZPOS  MPU6050_D2
#define MPU6050_MOT_ZNEG  MPU6050_D3
#define MPU6050_MOT_YPOS  MPU6050_D4
#define MPU6050_MOT_YNEG  MPU6050_D5
#define MPU6050_MOT_XPOS  MPU6050_D6
#define MPU6050_MOT_XNEG  MPU6050_D7

// IC2_MST_DELAY_CTRL Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_I2C_SLV0_DLY_EN MPU6050_D0
#define MPU6050_I2C_SLV1_DLY_EN MPU6050_D1
#define MPU6050_I2C_SLV2_DLY_EN MPU6050_D2
#define MPU6050_I2C_SLV3_DLY_EN MPU6050_D3
#define MPU6050_I2C_SLV4_DLY_EN MPU6050_D4
#define MPU6050_DELAY_ES_SHADOW MPU6050_D7

// SIGNAL_PATH_RESET Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_TEMP_RESET  MPU6050_D0
#define MPU6050_ACCEL_RESET MPU6050_D1
#define MPU6050_GYRO_RESET  MPU6050_D2

// MOT_DETECT_CTRL Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_MOT_COUNT0      MPU6050_D0
#define MPU6050_MOT_COUNT1      MPU6050_D1
#define MPU6050_FF_COUNT0       MPU6050_D2
#define MPU6050_FF_COUNT1       MPU6050_D3
#define MPU6050_ACCEL_ON_DELAY0 MPU6050_D4
#define MPU6050_ACCEL_ON_DELAY1 MPU6050_D5

// Combined definitions for the MOT_COUNT
#define MPU6050_MOT_COUNT_0 (0)
#define MPU6050_MOT_COUNT_1 (bit(MPU6050_MOT_COUNT0))
#define MPU6050_MOT_COUNT_2 (bit(MPU6050_MOT_COUNT1))
#define MPU6050_MOT_COUNT_3 (bit(MPU6050_MOT_COUNT1)|bit(MPU6050_MOT_COUNT0))

// Alternative names for the combined definitions
#define MPU6050_MOT_COUNT_RESET MPU6050_MOT_COUNT_0

// Combined definitions for the FF_COUNT
#define MPU6050_FF_COUNT_0 (0)
#define MPU6050_FF_COUNT_1 (bit(MPU6050_FF_COUNT0))
#define MPU6050_FF_COUNT_2 (bit(MPU6050_FF_COUNT1))
#define MPU6050_FF_COUNT_3 (bit(MPU6050_FF_COUNT1)|bit(MPU6050_FF_COUNT0))

// Alternative names for the combined definitions
#define MPU6050_FF_COUNT_RESET MPU6050_FF_COUNT_0

// Combined definitions for the ACCEL_ON_DELAY
#define MPU6050_ACCEL_ON_DELAY_0 (0)
#define MPU6050_ACCEL_ON_DELAY_1 (bit(MPU6050_ACCEL_ON_DELAY0))
#define MPU6050_ACCEL_ON_DELAY_2 (bit(MPU6050_ACCEL_ON_DELAY1))
#define MPU6050_ACCEL_ON_DELAY_3 (bit(MPU6050_ACCEL_ON_DELAY1)|bit(MPU6050_ACCEL_ON_DELAY0))

// Alternative names for the ACCEL_ON_DELAY
#define MPU6050_ACCEL_ON_DELAY_0MS MPU6050_ACCEL_ON_DELAY_0
#define MPU6050_ACCEL_ON_DELAY_1MS MPU6050_ACCEL_ON_DELAY_1
#define MPU6050_ACCEL_ON_DELAY_2MS MPU6050_ACCEL_ON_DELAY_2
#define MPU6050_ACCEL_ON_DELAY_3MS MPU6050_ACCEL_ON_DELAY_3

// USER_CTRL Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_SIG_COND_RESET MPU6050_D0
#define MPU6050_I2C_MST_RESET  MPU6050_D1
#define MPU6050_FIFO_RESET     MPU6050_D2
#define MPU6050_I2C_IF_DIS     MPU6050_D4   // must be 0 for MPU-6050
#define MPU6050_I2C_MST_EN     MPU6050_D5
#define MPU6050_FIFO_EN        MPU6050_D6

// PWR_MGMT_1 Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_CLKSEL0      MPU6050_D0
#define MPU6050_CLKSEL1      MPU6050_D1
#define MPU6050_CLKSEL2      MPU6050_D2
#define MPU6050_TEMP_DIS     MPU6050_D3    // 1: disable temperature sensor
#define MPU6050_CYCLE        MPU6050_D5    // 1: sample and sleep
#define MPU6050_SLEEP        MPU6050_D6    // 1: sleep mode
#define MPU6050_DEVICE_RESET MPU6050_D7    // 1: reset to default values

// Combined definitions for the CLKSEL
#define MPU6050_CLKSEL_0 (0)
#define MPU6050_CLKSEL_1 (bit(MPU6050_CLKSEL0))
#define MPU6050_CLKSEL_2 (bit(MPU6050_CLKSEL1))
#define MPU6050_CLKSEL_3 (bit(MPU6050_CLKSEL1)|bit(MPU6050_CLKSEL0))
#define MPU6050_CLKSEL_4 (bit(MPU6050_CLKSEL2))
#define MPU6050_CLKSEL_5 (bit(MPU6050_CLKSEL2)|bit(MPU6050_CLKSEL0))
#define MPU6050_CLKSEL_6 (bit(MPU6050_CLKSEL2)|bit(MPU6050_CLKSEL1))
#define MPU6050_CLKSEL_7 (bit(MPU6050_CLKSEL2)|bit(MPU6050_CLKSEL1)|bit(MPU6050_CLKSEL0))

// Alternative names for the combined definitions
#define MPU6050_CLKSEL_INTERNAL    MPU6050_CLKSEL_0
#define MPU6050_CLKSEL_X           MPU6050_CLKSEL_1
#define MPU6050_CLKSEL_Y           MPU6050_CLKSEL_2
#define MPU6050_CLKSEL_Z           MPU6050_CLKSEL_3
#define MPU6050_CLKSEL_EXT_32KHZ   MPU6050_CLKSEL_4
#define MPU6050_CLKSEL_EXT_19_2MHZ MPU6050_CLKSEL_5
#define MPU6050_CLKSEL_RESERVED    MPU6050_CLKSEL_6
#define MPU6050_CLKSEL_STOP        MPU6050_CLKSEL_7

// PWR_MGMT_2 Register
// These are the names for the bits.
// Use these only with the bit() macro.
#define MPU6050_STBY_ZG       MPU6050_D0
#define MPU6050_STBY_YG       MPU6050_D1
#define MPU6050_STBY_XG       MPU6050_D2
#define MPU6050_STBY_ZA       MPU6050_D3
#define MPU6050_STBY_YA       MPU6050_D4
#define MPU6050_STBY_XA       MPU6050_D5
#define MPU6050_LP_WAKE_CTRL0 MPU6050_D6
#define MPU6050_LP_WAKE_CTRL1 MPU6050_D7

// Combined definitions for the LP_WAKE_CTRL
#define MPU6050_LP_WAKE_CTRL_0 (0)
#define MPU6050_LP_WAKE_CTRL_1 (bit(MPU6050_LP_WAKE_CTRL0))
#define MPU6050_LP_WAKE_CTRL_2 (bit(MPU6050_LP_WAKE_CTRL1))
#define MPU6050_LP_WAKE_CTRL_3 (bit(MPU6050_LP_WAKE_CTRL1)|bit(MPU6050_LP_WAKE_CTRL0))

// Alternative names for the combined definitions
// The names uses the Wake-up Frequency.
#define MPU6050_LP_WAKE_1_25HZ MPU6050_LP_WAKE_CTRL_0
#define MPU6050_LP_WAKE_2_5HZ  MPU6050_LP_WAKE_CTRL_1
#define MPU6050_LP_WAKE_5HZ    MPU6050_LP_WAKE_CTRL_2
#define MPU6050_LP_WAKE_10HZ   MPU6050_LP_WAKE_CTRL_3

// Default I2C address for the MPU-6050 is 0x68.
// But only if the AD0 pin is low.
// Some sensor boards have AD0 high, and the
// I2C address thus becomes 0x69.
#define MPU6050_I2C_ADDRESS 0x68

// Declaring an union for the registers and the axis values.
// The byte order does not match the byte order of 
// the compiler and AVR chip.
// The AVR chip (on the Arduino board) has the Low Byte 
// at the lower address.
// But the MPU-6050 has a different order: High Byte at
// lower address, so that has to be corrected.
// The register part "reg" is only used internally, 
// and are swapped in code.
typedef union accel_t_gyro_union
{
  struct
  {
    uint8_t x_accel_h;
    uint8_t x_accel_l;
    uint8_t y_accel_h;
    uint8_t y_accel_l;
    uint8_t z_accel_h;
    uint8_t z_accel_l;
    uint8_t t_h;
    uint8_t t_l;
    uint8_t x_gyro_h;
    uint8_t x_gyro_l;
    uint8_t y_gyro_h;
    uint8_t y_gyro_l;
    uint8_t z_gyro_h;
    uint8_t z_gyro_l;
  } reg;
  struct 
  {
    int16_t x_accel;
    int16_t y_accel;
    int16_t z_accel;
    int16_t temperature;
    int16_t x_gyro;
    int16_t y_gyro;
    int16_t z_gyro;
  } value;
};

void setup()
{      
  int error;
  uint8_t c;

  Serial.begin(115200);
  Serial.println(F("InvenSense MPU-6050"));
  Serial.println(F("June 2012"));

  // Initialize the 'Wire' class for the I2C-bus.
  Wire.begin();

  // default at power-up:
  //    Gyro at 250 degrees second
  //    Acceleration at 2g
  //    Clock source at internal 8MHz
  //    The device is in sleep mode.
  //

  error = MPU6050_read (MPU6050_WHO_AM_I, &c, 1);
  Serial.print(F("WHO_AM_I : "));
  Serial.print(c,HEX);
  Serial.print(F(", error = "));
  Serial.println(error,DEC);

  // According to the datasheet, the 'sleep' bit
  // should read a '1'. But I read a '0'.
  // That bit has to be cleared, since the sensor
  // is in sleep mode at power-up. Even if the
  // bit reads '0'.
  error = MPU6050_read (MPU6050_PWR_MGMT_2, &c, 1);
  Serial.print(F("PWR_MGMT_2 : "));
  Serial.print(c,HEX);
  Serial.print(F(", error = "));
  Serial.println(error,DEC);

  // Clear the 'sleep' bit to start the sensor.
  MPU6050_write_reg (MPU6050_PWR_MGMT_1, 0);
}

void loop()
{
  int error;
  double dT;
  accel_t_gyro_union accel_t_gyro;
  
  Serial.println("*MPU-6050*");

  // Read the raw values.
  // Read 14 bytes at once, 
  // containing acceleration, temperature and gyro.
  // With the default settings of the MPU-6050,
  // there is no filter enabled, and the values
  // are not very stable.
  error = MPU6050_read (MPU6050_ACCEL_XOUT_H, (uint8_t *) &accel_t_gyro, sizeof(accel_t_gyro));
  Serial.print("Read accel, temp and gyro, error = ");
  Serial.println(error,DEC);

  // Swap all high and low bytes.
  // After this, the registers values are swapped, 
  // so the structure name like x_accel_l does no 
  // longer contain the lower byte.
  uint8_t swap;
  #define SWAP(x,y) swap = x; x = y; y = swap

  SWAP (accel_t_gyro.reg.x_accel_h, accel_t_gyro.reg.x_accel_l);
  SWAP (accel_t_gyro.reg.y_accel_h, accel_t_gyro.reg.y_accel_l);
  SWAP (accel_t_gyro.reg.z_accel_h, accel_t_gyro.reg.z_accel_l);
  SWAP (accel_t_gyro.reg.t_h, accel_t_gyro.reg.t_l);
  SWAP (accel_t_gyro.reg.x_gyro_h, accel_t_gyro.reg.x_gyro_l);
  SWAP (accel_t_gyro.reg.y_gyro_h, accel_t_gyro.reg.y_gyro_l);
  SWAP (accel_t_gyro.reg.z_gyro_h, accel_t_gyro.reg.z_gyro_l);

  // Print the raw acceleration values

  Serial.print("accel x,y,z: ");
  Serial.print(accel_t_gyro.value.x_accel, DEC);
  Serial.print(" ");
  Serial.print(accel_t_gyro.value.y_accel, DEC);
  Serial.print(" ");
  Serial.print(accel_t_gyro.value.z_accel, DEC);
  Serial.println("");

  // The temperature sensor is -40 to +85 degrees Celsius.
  // It is a signed integer.
  // According to the datasheet: 
  //   340 per degrees Celsius, -512 at 35 degrees.
  // At 0 degrees: -512 - (340 * 35) = -12412

  Serial.print(F("temperature: "));
  dT = ( (double) accel_t_gyro.value.temperature + 12412.0) / 340.0;
  Serial.print(dT, 3);
  Serial.print(F(" degrees Celsius"));
  Serial.println(F(""));

  // Print the raw gyro values.

  Serial.print("gyro x,y,z: ");
  Serial.print(accel_t_gyro.value.x_gyro, DEC);
  Serial.print(" ");
  Serial.print(accel_t_gyro.value.y_gyro, DEC);
  Serial.print(" ");
  Serial.print(accel_t_gyro.value.z_gyro, DEC);
  Serial.println("");

  delay(1000);
}

// --------------------------------------------------------
// MPU6050_read
//
// This is a common function to read multiple bytes 
// from an I2C device.
//
// It uses the boolean parameter for Wire.endTransMission()
// to be able to hold or release the I2C-bus. 
// This is implemented in Arduino 1.0.1.
//
// Only this function is used to read. 
// There is no function for a single byte.
//
int MPU6050_read(int start, uint8_t *buffer, int size)
{
  int i, n, error;

  Wire.beginTransmission(MPU6050_I2C_ADDRESS);
  n = Wire.write(start);
  if (n != 1)
    return (-10);

  n = Wire.endTransmission(false);    // hold the I2C-bus
  if (n != 0)
    return (n);

  // Third parameter is true: relase I2C-bus after data is read.
  Wire.requestFrom(MPU6050_I2C_ADDRESS, size, true);
  i = 0;
  while(Wire.available() && i<size)
  {
    buffer[i++]=Wire.read();
  }
  if ( i != size)
    return (-11);

  return (0);  // return : no error
}

// --------------------------------------------------------
// MPU6050_write
//
// This is a common function to write multiple bytes to an I2C device.
//
// If only a single register is written,
// use the function MPU_6050_write_reg().
//
// Parameters:
//   start : Start address, use a define for the register
//   pData : A pointer to the data to write.
//   size  : The number of bytes to write.
//
// If only a single register is written, a pointer
// to the data has to be used, and the size is
// a single byte:
//   int data = 0;        // the data to write
//   MPU6050_write (MPU6050_PWR_MGMT_1, &c, 1);
//
int MPU6050_write(int start, const uint8_t *pData, int size)
{
  int n, error;

  Wire.beginTransmission(MPU6050_I2C_ADDRESS);
  n = Wire.write(start);        // write the start address
  if (n != 1)
    return (-20);

  n = Wire.write(pData, size);  // write data bytes
  if (n != size)
    return (-21);

  error = Wire.endTransmission(true); // release the I2C-bus
  if (error != 0)
    return (error);

  return (0);         // return : no error
}

// --------------------------------------------------------
// MPU6050_write_reg
//
// An extra function to write a single register.
// It is just a wrapper around the MPU_6050_write()
// function, and it is only a convenient function
// to make it easier to write a single register.
//
int MPU6050_write_reg(int reg, uint8_t data)
{
  int error;

  error = MPU6050_write(reg, &data, 1);

  return (error);
}

With this, data is sent to RPi through serial connection. For capturing data on RPi, this python code can work.

import sys
import serial

port = "/dev/ttyACM1"
serialFromArduino = serial.Serial(port, 115200)
serialFromArduino.flushInput()

def getSensorData():
    print('*MPU-6050*')
    r_accel = serialFromArduino.readline()
    print(r_accel)
    r_temp = serialFromArduino.readline()
    print(r_temp)
    r_gyro = serialFromArduino.readline()
    print(r_gyro)

    accel = r_accel.split()
    temp = r_temp.split()
    gyro = r_gyro.split()
    acc_x, acc_y, acc_z = accel[2],accel[3],accel[4]
    temp = temp[1]
    gyro_x, gyro_y, gyro_z = gyro[2],gyro[3],gyro[4]

    return(float(acc_x),float(acc_y),float(acc_z),float(temp),float(gyro_x),float(gyro_y),float(gyro_z))

def main():
    print('starting...')
    while True:
        if(serialFromArduino.inWaiting() > 0):
            if(serialFromArduino.readline().find('*') != -1 and serialFromArduino.readline().find('=') != -1):
                acc_x,acc_y,acc_z,temp,gyro_x,gyro_y,gyro_z = getSensorData()
            
if __name__ == '__main__':
    main()

Result looks like this.